This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Friday, October 21, 2016

A very interesting integral

Evaluate the integral:

$$\mathcal{J} =\int_0^1 \left( \frac{1}{1-x} + \frac{1}{\ln x} \right) \, {\rm d}x$$

Solution

We begin with the very well known identity:

$$\int_{0}^{1} \frac{1-t^x}{1-t} \, {\rm d}t = \mathcal{H}_x$$

Now , let's see what shall happen if we actually integrate it. Successively we have

\begin{align*}
\int_{0}^{1}\mathcal{H}_x \, {\rm d}x &= \int_{0}^{1} \int_{0}^{1} \frac{1-t^x}{1-t} \,{\rm d}t \, {\rm d}x \\
 &= \int_{0}^{1} \int_{0}^{1} \frac{1-t^x}{1-t} \, {\rm d}x \, {\rm d}t\\
 &= \int_{0}^{1}\frac{1}{1-t} \int_{0}^{1}\left [ 1-t^x \right ] \, {\rm d}x \, {\rm d}t\\
 &= \int_{0}^{1}\left (\frac{1}{1-t}  \left [ x- \frac{t^x}{ \ln t} \right ]_0^1 \right ) \, {\rm d}t \\
 &= \int_{0}^{1} \left ( \frac{1}{1-t} + \frac{1}{\ln t} \right ) \, {\rm d}t
\end{align*}

Aha! Magic. Our integral appeared. Hmm.. the main problem actually is how to evaluate the integral of the harmonic number. Hm! That's not so difficult.  Recall the following:

\begin{equation}\mathcal{H}_x = \gamma + \psi(x+1) \end{equation}

where $\psi$ stands for the digamma function. Thus , integrating $(1)$ we have that:

\begin{align*}
\int_{0}^{1} \mathcal{H}_x \, {\rm d}x &=\int_{0}^{1} \left [ \gamma  + \psi(x+1) \right ] \, {\rm d}x \\
 &= \left [ \gamma x + \log \Gamma(x+1) \right ]_0^1\\
 &= \gamma + \log \Gamma(2) - \log \Gamma(1)\\
 &= \gamma
\end{align*}

where $\gamma$ stands for the Euler - Mascheroni constant. In fact, it holds that:

\begin{equation}\int_0^1 \left ( \frac{1}{1-x} + \frac{1}{\ln x} \right ) \, {\rm d}x = \lim_{s\rightarrow 1} \left ( \zeta(s)  - \frac{1}{s-1} \right ) \end{equation}

1 comment:

  1. Shall we continue a bit? The following hold:

    1.$\displaystyle \int_{0}^{1} \left( \frac{1}{\log x} + \frac{1}{1-x} \right)^2 \, {\rm d}x = \log (2\pi) - \frac{3}{2}$. See here for a proof.

    2. $\displaystyle \int_{0}^{1}\left ( \frac{1}{\log x} + \frac{1}{1-x} \right )^3 \, {\rm d}x = - \frac{31}{24} + 6 \log \mathbb{A}$ where $\mathbb{A}$ stands for the Glashier - Kinkelin constant.

    3. Now comes the hilarious part:

    In general for $m \geq 2$ it holds that:

    \begin{align*}
    & \int_{0}^{1}\left( \frac{1}{\log x} + \frac{1}{1-x} \right)^{m} \, dx \\
    &= -\frac{H_{m-1}}{(m-1)!} + \frac{1}{(m-1)!} \sum_{k=1}^{m-1} \left[{{m-1}\atop{k}}\right] \zeta(1-k) \\
    &\quad - \frac{1}{(m-2)!}\sum_{j=1}^{m-1}\sum_{l=m-j}^{m-1} \binom{m}{j} \binom{m-2}{j-1} \left[{{j-1}\atop{l+j-m}}\right] \{ \zeta'(1-l) + H_{m-j-1} \zeta(1-l) \}
    \end{align*}

    Shock! I , personally, have no idea how to prove this.

    An extension of the original integral is the following:

    \begin{align*}
    \gamma &= \int_{0}^{1}\left ( \frac{1}{1-x} + \frac{1}{\ln x} \right ) \, {\rm d}x \\
    &\!\!\!\!\overset{x=e^{-y}}{=\! =\! =\! =\!} \int_{0}^{\infty} \left ( \frac{e^{-y}}{1-e^{-y}} - \frac{e^{-y}}{y} \right ) \, {\rm d}y
    \end{align*}

    Of course we already knew about that since in the digamma wiki page the formula is already stated under the Integral Represantations tab.

    ReplyDelete