Evaluate the series:
$$\sum_{n=0}^{\infty}\frac{n}{2^{n+1}\left ( n+1 \right )^2}$$
Solution:
The dilogarithm function is defined as $ \displaystyle {\rm Li}_2(x)= -\int_0^x \frac{\ln(1-t)}{t}\,{\rm d}t$. . Expanding the $\ln (1-t) $ as a Taylor series and interchanging integral and sum we have what follows:
$$\begin{aligned}
{\rm Li}_2(x) &=-\int_{0}^{x}\frac{\ln(1-t)}{t}\,{\rm d}t \\
&= \int_{0}^{x}\frac{1}{t}\sum_{n=1}^{\infty}\frac{t^n}{n}\,{\rm d}t\\
&= \int_{0}^{x}\sum_{n=1}^{\infty}\frac{t^{n-1}}{n}\,{\rm d}t\\
&=\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{x}t^{n-1}\,{\rm d}t \\
&=\sum_{n=1}^{\infty}\frac{x^n}{n^2}
\end{aligned}$$
Using the new formula we derived (expressing the dilog as a series) we get the following functional equation:
$$ \begin{equation} {\rm Li}_2(x)+{\rm Li}_2(1-x)=\frac{\pi^2}{6}-\ln x \ln (1-x), \; x \in (0, 1) \end{equation} $$
________________________________________________
We define the function $\displaystyle f(x)=\sum_{k=0}^{\infty}\frac{kx^{k+1}}{\left ( k+1 \right )^2}$ and we differentiate it , thus
$$f'(x)=\sum_{k=0}^{\infty}\frac{kx^k}{k+1}=\sum_{k=0}^{\infty}x^k -\sum_{k=0}^{\infty}\frac{x^k}{k+1}=\frac{1}{1-x}+\frac{\ln (1-x)}{x}$$
Integrating back and plugging $x=1/2$ to get the wanted series we have:
$$f\left ( \frac{1}{2} \right )=\int_{0}^{1/2}\left [ \frac{1}{1-x}+\frac{\ln (1-x)}{x} \right ]\,{\rm d}x =\ln 2 -{\rm Li}_2\left ( \frac{1}{2} \right )$$
Using $(1)$ we have that :
$$ 2{\rm Li}_2 \left( \frac{1}{2} \right) =\frac{\pi^2}{6}-\ln^2 2 \Leftrightarrow {\rm Li}_2 \left( \frac{1}{2} \right)=\frac{\pi^2}{12}-\frac{\ln^2 2}{2}$$
Hence the initial series evaluates to:
$$\sum_{k=0}^{\infty}\frac{k}{2^{k+1}(k+1)^2}=\ln 2 +\frac{\ln^2 2}{2}-\frac{\pi^2}{12}$$
$$\sum_{n=0}^{\infty}\frac{n}{2^{n+1}\left ( n+1 \right )^2}$$
Solution:
The dilogarithm function is defined as $ \displaystyle {\rm Li}_2(x)= -\int_0^x \frac{\ln(1-t)}{t}\,{\rm d}t$. . Expanding the $\ln (1-t) $ as a Taylor series and interchanging integral and sum we have what follows:
$$\begin{aligned}
{\rm Li}_2(x) &=-\int_{0}^{x}\frac{\ln(1-t)}{t}\,{\rm d}t \\
&= \int_{0}^{x}\frac{1}{t}\sum_{n=1}^{\infty}\frac{t^n}{n}\,{\rm d}t\\
&= \int_{0}^{x}\sum_{n=1}^{\infty}\frac{t^{n-1}}{n}\,{\rm d}t\\
&=\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{x}t^{n-1}\,{\rm d}t \\
&=\sum_{n=1}^{\infty}\frac{x^n}{n^2}
\end{aligned}$$
Using the new formula we derived (expressing the dilog as a series) we get the following functional equation:
$$ \begin{equation} {\rm Li}_2(x)+{\rm Li}_2(1-x)=\frac{\pi^2}{6}-\ln x \ln (1-x), \; x \in (0, 1) \end{equation} $$
________________________________________________
We define the function $\displaystyle f(x)=\sum_{k=0}^{\infty}\frac{kx^{k+1}}{\left ( k+1 \right )^2}$ and we differentiate it , thus
$$f'(x)=\sum_{k=0}^{\infty}\frac{kx^k}{k+1}=\sum_{k=0}^{\infty}x^k -\sum_{k=0}^{\infty}\frac{x^k}{k+1}=\frac{1}{1-x}+\frac{\ln (1-x)}{x}$$
Integrating back and plugging $x=1/2$ to get the wanted series we have:
$$f\left ( \frac{1}{2} \right )=\int_{0}^{1/2}\left [ \frac{1}{1-x}+\frac{\ln (1-x)}{x} \right ]\,{\rm d}x =\ln 2 -{\rm Li}_2\left ( \frac{1}{2} \right )$$
Using $(1)$ we have that :
$$ 2{\rm Li}_2 \left( \frac{1}{2} \right) =\frac{\pi^2}{6}-\ln^2 2 \Leftrightarrow {\rm Li}_2 \left( \frac{1}{2} \right)=\frac{\pi^2}{12}-\frac{\ln^2 2}{2}$$
Hence the initial series evaluates to:
$$\sum_{k=0}^{\infty}\frac{k}{2^{k+1}(k+1)^2}=\ln 2 +\frac{\ln^2 2}{2}-\frac{\pi^2}{12}$$
No comments:
Post a Comment