Let $f(x)=\sin ax, \; x \in (0, \pi) $ and let $a \in \mathbb{Z}$ . Prove that $f$ can be expanded into Fourier cosine series and that:
$$\sin ax \sim \left\{\begin{matrix} \displaystyle \dfrac{4a}{\pi}\sum_{n=0}^{\infty}\frac{\cos (2n+1)x}{a^2-(2n+1)^2} &,\;\;\; a {\rm\; is \; even}\\ \displaystyle \frac{4a}{\pi}\left [ \frac{1}{2a^2}+\sum_{n=1}^{\infty}\frac{\cos 2nx}{a^2-4n^2} \right ] &,\;\;\; a {\rm\; is \; odd} \end{matrix}\right.$$
Solution:
We extend the function \( f \) to a \( 2 \pi \) periodic function $$ F(x)=\left\{\begin{matrix}
f(x) &,x \in (0, \pi) \\
f(-x)&, x \in (-\pi, 0) \\
0&, x \in \left \{ -\pi, 0, \pi \right \}
\end{matrix}\right. $$
that is continuous and even. \( F \) can be expanded in a Fourier series of the form:
$$F(x) \sim \frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos n x, \; x \in (-\pi, \pi) \setminus \{0 \}$$
We are now evaluating the coefficients:
\( \color{grey} \blacksquare \) \( \displaystyle a_0= \frac{1}{\pi}\int_{-\pi}^{\pi}\sin ax \, {\rm d}x= \frac{2\left ( 1-\cos a \pi \right )}{a\pi} \)
\( \color{grey} \blacksquare \) \( \displaystyle a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}\sin ax \cos nx \, {\rm d}x= \frac{-2\left ( n\sin n\pi \sin a \pi + a \cos a\pi \cos n\pi-a \right )}{a^2-n^2} \)
We distinguish cases for \(a \) using at the same time the identity: $$ \cos n \pi = (-1)^n , \; n \in \mathbb{N}$$
\( \color{red} \blacksquare\) If \(a \) is even a straightforward calculation shows that:
$$\sin ax \sim \dfrac{4a}{\pi}\sum_{n=0}^{\infty}\frac{\cos (2n+1)x}{a^2-(2n+1)^2}$$
while ,
\( \color{red} \blacksquare\) If \(a \) is odd we have that:
$$ \sin ax \sim \frac{4a}{\pi}\left [ \frac{1}{2a^2}+\sum_{n=1}^{\infty}\frac{\cos 2nx}{a^2-4n^2} \right ]$$
Source: mathimatikoi.org
$$\sin ax \sim \left\{\begin{matrix} \displaystyle \dfrac{4a}{\pi}\sum_{n=0}^{\infty}\frac{\cos (2n+1)x}{a^2-(2n+1)^2} &,\;\;\; a {\rm\; is \; even}\\ \displaystyle \frac{4a}{\pi}\left [ \frac{1}{2a^2}+\sum_{n=1}^{\infty}\frac{\cos 2nx}{a^2-4n^2} \right ] &,\;\;\; a {\rm\; is \; odd} \end{matrix}\right.$$
Solution:
We extend the function \( f \) to a \( 2 \pi \) periodic function $$ F(x)=\left\{\begin{matrix}
f(x) &,x \in (0, \pi) \\
f(-x)&, x \in (-\pi, 0) \\
0&, x \in \left \{ -\pi, 0, \pi \right \}
\end{matrix}\right. $$
that is continuous and even. \( F \) can be expanded in a Fourier series of the form:
$$F(x) \sim \frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos n x, \; x \in (-\pi, \pi) \setminus \{0 \}$$
We are now evaluating the coefficients:
\( \color{grey} \blacksquare \) \( \displaystyle a_0= \frac{1}{\pi}\int_{-\pi}^{\pi}\sin ax \, {\rm d}x= \frac{2\left ( 1-\cos a \pi \right )}{a\pi} \)
\( \color{grey} \blacksquare \) \( \displaystyle a_n = \frac{1}{\pi}\int_{-\pi}^{\pi}\sin ax \cos nx \, {\rm d}x= \frac{-2\left ( n\sin n\pi \sin a \pi + a \cos a\pi \cos n\pi-a \right )}{a^2-n^2} \)
We distinguish cases for \(a \) using at the same time the identity: $$ \cos n \pi = (-1)^n , \; n \in \mathbb{N}$$
\( \color{red} \blacksquare\) If \(a \) is even a straightforward calculation shows that:
$$\sin ax \sim \dfrac{4a}{\pi}\sum_{n=0}^{\infty}\frac{\cos (2n+1)x}{a^2-(2n+1)^2}$$
while ,
\( \color{red} \blacksquare\) If \(a \) is odd we have that:
$$ \sin ax \sim \frac{4a}{\pi}\left [ \frac{1}{2a^2}+\sum_{n=1}^{\infty}\frac{\cos 2nx}{a^2-4n^2} \right ]$$
Source: mathimatikoi.org
No comments:
Post a Comment