This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Friday, July 31, 2015

Series and inequality

Prove that:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)}<2$$

IMC 2015 / Round 2 Problem 1

Solution



Let $S$ denote the given sum. Then:

$$\begin{aligned}
S=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}\left ( n+1 \right )}&= \sum_{n=1}^{\infty}\frac{\sqrt{n}}{n(n+1)} \\
&=\sum_{n=1}^{\infty}\left [ \frac{\sqrt{n}}{n}- \frac{\sqrt{n}}{n+1} \right ]\\
&= \frac{\sqrt{1}}{1}+ \sum_{n=1}^{\infty} \left[ \frac{\sqrt{n+1}}{n+1}-\frac{\sqrt{n}}{n+1} \right]\\
 &=1+ \sum_{n=1}^{\infty}\frac{1}{\left ( n+1 \right )\left ( \sqrt{n}+\sqrt{n+1} \right )} \\
 &\overset{CS}{\leq}  1+ \frac{1}{4}\sum_{n=1}^{\infty}\left [ \frac{1}{\sqrt{n+1}(n+1)} + \frac{1}{\sqrt{n}(n+1)} \right ]\\
 &= 1+ \frac{S}{4}+ \frac{1}{4}\sum_{n=2}^{\infty}\frac{1}{n^{3/2}}
\end{aligned}$$

For the last sum we use the estimation of the integral. Hence:

$$\sum_{n=2}^{\infty} \frac{1}{n^{3/2}} <\int_{1}^{\infty} \frac{1}{x^{3/2}}\, {\rm d}x =2$$

and the result follows, since $\displaystyle S< 1+ \frac{S}{4}+ \frac{1}{2}\Leftrightarrow S<2$.

1 comment:

  1. One more way to produce the inequality would be as in the link.

    $$\begin{aligned}
    \sum_{n=1}^{\infty}\frac{1}{\sqrt{n}(n+1)} &=\sum_{n=1}^{\infty}\frac{1}{\sqrt{n} \sqrt{n+1}}\cdot \frac{1}{\sqrt{n+1}} \\
    &< \sum_{n=1}^{\infty}\frac{1}{\sqrt{n}\sqrt{n+1}}\cdot \frac{2}{\sqrt{n}+\sqrt{n+1}} \\
    &= 2 \sum_{n=1}^{\infty}\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\sqrt{n+1}}\\
    &= 2\sum_{n=1}^{\infty}\left [ \frac{1}{\sqrt{n}}- \frac{1}{\sqrt{n+1}} \right ] =2
    \end{aligned}$$

    and this completes the exercise.

    ReplyDelete