This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Friday, August 14, 2015

Inequality

Let $x, y, z$ be positive real numbers such that $x+y+z=1$. Prove that:

$$\sum_{cyc}\frac{x^3}{\left ( x+y \right )^2}\geq \frac{1}{4}$$

Solution



It is pretty well known that:

$$\frac{x_1 ^m}{a_1 ^{m-1}}+\frac{x_2 ^m}{a_2 ^{m-1}}+...+\frac{x_n ^m}{a_n ^{m-1}}\geq \frac{(x_1 +x_2 + ... +x_n)^m}{(a_1 +a_2 + ... +a_n )^{m-1}}$$

where $m$ is a natural number greater or equal to $2$. Hence:

$$ \sum_{cyc} \frac{x^3 }{(x+y)^2} \geq \frac{(x+y+z)^3}{(x+y+y+z+z+x)^2}=\frac{1}{(2x+2y+2z)^2} =\frac{1}{4(x+y+z)^2}=\frac{1}{4}$$

completing the exercise.

The exercise can also be found in mathematica.gr

1 comment:

  1. Here is a solution I found.

    Using the Cauchy-Schwarz and AM-GM Inequalities we have
    $$\begin{aligned}
    \sum\frac{x^3}{(x+y)^2}\geq\sum\frac{x^3}{2(x^2+y^2)}&=\sum\left(\frac{x}{2}-\frac{xy^2}{2(x^2+y^2)}\right)\\&\geq\sum\left(\frac{x}{2}-\frac{y}{4}\right)\\&=\frac{x+y+z}{4}\\&=\frac{1}{4}
    \end{aligned}$$
    and the proof is completed.

    ReplyDelete