Let $a, \; b , \; c $ be real positive numbers that their product is equal to $1$. Prove that:
$$\frac{1}{a^3 (b+c)} +\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)} \geq \frac{3}{2}$$
Solution
We are using Tittu's lemma.
$$\begin{aligned}
\frac{1}{a^3 (b+c)} +\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)} &= \frac{\frac{1}{a^2}}{a(b+c)} + \frac{\frac{1}{b^2}}{b(a+c)}+ \frac{\frac{1}{c^2}}{c(b+a)} \\
&\geq \frac{\left ( \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} \right )^2}{2 (ab+bc+ca)} \\
&= \frac{ab+bc+ca}{2}\\
&\geq \frac{3}{2}
\end{aligned}$$
$$\frac{1}{a^3 (b+c)} +\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)} \geq \frac{3}{2}$$
Solution
We are using Tittu's lemma.
$$\begin{aligned}
\frac{1}{a^3 (b+c)} +\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)} &= \frac{\frac{1}{a^2}}{a(b+c)} + \frac{\frac{1}{b^2}}{b(a+c)}+ \frac{\frac{1}{c^2}}{c(b+a)} \\
&\geq \frac{\left ( \frac{1}{a}+ \frac{1}{b}+ \frac{1}{c} \right )^2}{2 (ab+bc+ca)} \\
&= \frac{ab+bc+ca}{2}\\
&\geq \frac{3}{2}
\end{aligned}$$
No comments:
Post a Comment