Give an example of a sequence of functions $f_n:\mathbb{R} \rightarrow \mathbb{R}$ such that each $f_n$
We take:
$$f_n(x)=\left\{\begin{matrix}
0 &, &x<0 \\
0&, & x \in \mathbb{Q}\cap [0, +\infty) \\
\frac{1}{n}& , & x \in \mathbb{R}\setminus \mathbb{Q}\cap (0, +\infty)
\end{matrix}\right.$$
and we see that it converges uniformly to the zero function, since it has a distance of $1/n$.
- is continuous in $(-\infty, 0)$
- is discontinuous in $(0, +\infty)$
- converges uniformly to a continuous function
We take:
$$f_n(x)=\left\{\begin{matrix}
0 &, &x<0 \\
0&, & x \in \mathbb{Q}\cap [0, +\infty) \\
\frac{1}{n}& , & x \in \mathbb{R}\setminus \mathbb{Q}\cap (0, +\infty)
\end{matrix}\right.$$
and we see that it converges uniformly to the zero function, since it has a distance of $1/n$.
No comments:
Post a Comment