This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Wednesday, September 2, 2015

Algebraic equation

Solve the equation

$$x+\sqrt{2+\sqrt{2+\sqrt{x}}}=2$$

Solution



We set $x =4\cos^2 4a , \; a \in \left(0, \frac{\pi}{8} \right)$. Hence the LHS is transformed into:

$$x+\sqrt{2+\sqrt{2+\sqrt{x}}}=4\cos^2 4a + \sqrt{2+\sqrt{2+2\cos 4a }} =4\cos^2 4a + \sqrt{2+2\cos 2a} = \\4\cos^2 4a + 2\cos a$$

Hence the equation can be now translated as:

$$\begin{aligned}
4\cos^2 4a +2\cos a =2 & \Leftrightarrow 2 \cos^2 4a = 2 \sin^2 \frac{a}{2} \\
 &\Leftrightarrow \cos 4a = \sin \frac{a}{2} \\
 &\Leftrightarrow 4a = \frac{\pi}{2} - \frac{a}{2} \\
 &\Leftrightarrow a = \frac{\pi}{9}
\end{aligned}$$

Hence $\displaystyle x = 4\cos^2 \frac{4\pi}{9}$.

The exercise can also be found in mathematica.gr

No comments:

Post a Comment