Let $x, y, z \in \mathbb{R}^*$ such that it holds $x+y+z=0$. Prove that the number
$$\mathcal{A}= \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}$$
is a square of rational number.
Solution
Indeed we have successively:
$$\begin{aligned}
\frac{1}{x^2}+ \frac{1}{y^2}+ \frac{1}{z^2} &=\frac{x^2y^2 + y^2z^2+z^2x^2}{x^2y^2z^2} \\
&= \frac{\left ( xy+yz+zx \right )^2- \cancelto{0}{2xyz \left ( x+y+z \right )}}{x^2y^2z^2}\\
&= \left ( \frac{xy+yz+zx}{xyz} \right )^2
\end{aligned}$$
ending the exercise.
$$\mathcal{A}= \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}$$
is a square of rational number.
Solution
Indeed we have successively:
$$\begin{aligned}
\frac{1}{x^2}+ \frac{1}{y^2}+ \frac{1}{z^2} &=\frac{x^2y^2 + y^2z^2+z^2x^2}{x^2y^2z^2} \\
&= \frac{\left ( xy+yz+zx \right )^2- \cancelto{0}{2xyz \left ( x+y+z \right )}}{x^2y^2z^2}\\
&= \left ( \frac{xy+yz+zx}{xyz} \right )^2
\end{aligned}$$
ending the exercise.
No comments:
Post a Comment