Compute:
\[\log_2\left(\prod_{a=1}^{2015}\prod_{b=1}^{2015}\left(1+e^{2\pi iab/2015}\right)\right)\]
Solution
First, we use the fact that for any odd integer $m$, we have
\[ \prod_{n=1}^{m} (1 + \omega^n) = 2 \]
where $\omega$ is an $n$th root of unity. Thus
\begin{align*}
\log_2 \prod_{a=1}^{2015} \prod_{b=1}^{2015}
\left( 1 + e^{\frac{2\pi i a b}{2015}} \right)
&= \log_2 \prod_{a=1}^{2015} 2^{\gcd(a,2015)} \\
&= \sum_{a=1}^{2015} \gcd(a,2015) \\
&= \sum_{d \mid 2015} \frac{2015}{d} \phi(d) \\
&= (5+\phi(5))(13+\phi(13))(31+\phi(31)) \\
&= 9 \cdot 25 \cdot 61 \\
&= 13725
\end{align*}
The solution can also be found in aops.com
\[\log_2\left(\prod_{a=1}^{2015}\prod_{b=1}^{2015}\left(1+e^{2\pi iab/2015}\right)\right)\]
Solution
First, we use the fact that for any odd integer $m$, we have
\[ \prod_{n=1}^{m} (1 + \omega^n) = 2 \]
where $\omega$ is an $n$th root of unity. Thus
\begin{align*}
\log_2 \prod_{a=1}^{2015} \prod_{b=1}^{2015}
\left( 1 + e^{\frac{2\pi i a b}{2015}} \right)
&= \log_2 \prod_{a=1}^{2015} 2^{\gcd(a,2015)} \\
&= \sum_{a=1}^{2015} \gcd(a,2015) \\
&= \sum_{d \mid 2015} \frac{2015}{d} \phi(d) \\
&= (5+\phi(5))(13+\phi(13))(31+\phi(31)) \\
&= 9 \cdot 25 \cdot 61 \\
&= 13725
\end{align*}
The solution can also be found in aops.com
No comments:
Post a Comment