This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Sunday, January 17, 2016

Inequality

Let $x, y, z >0$ . Prove that:

$$\frac{3xy}{xy+x+y}+ \frac{3yz}{yz+y+z}+ \frac{3zx}{zx+z+x}\leq 2+ \frac{x^2+y^2+z^2}{3}$$

(Câtâlin Cristea)
Solution
 We have succesively:
\begin{align*}
2+ \frac{x^2+y^2+z^2}{3} &=\sum \frac{x^2+y^2+4}{6} \\
 &\geq \sum \sqrt[6]{x^2y^2} \\
 &=\sum \frac{xy}{\sqrt[3]{(xy)xy}} \\
 &\geq \sum \frac{xy}{\left ( xy+x+y \right )/3}\\
 &=\sum \frac{3xy}{xy+x+y}
\end{align*}


1 comment:

  1. In the first line you need to delete $z^2$ and instead write
    $$\sum\frac{x^2+y^2+4}{6}.$$

    ReplyDelete