Let $G$ be a group such that for (some) three consecutive integer numbers $i$ and for all $a, b \in G$ , it holds that:
$$(ab)^i=a^i b^i$$
Prove that $G$ is abelian.
Solution
Let $i, \; i+1, \; i+2$ be the three consecutive numbers. Then:
\begin{align*}
a a^i b^i abb = a^{i+1}b^{i+1}ab &\Leftrightarrow \left ( a^{i+1} \right )^{-1} a a^i b^i abb = \left ( a^{i+1} \right )^{-1} a^{i+1} b^{i+1} ab \\
&\Leftrightarrow b^i abb = b^{i+1}a b\\
&\Leftrightarrow b^i ab = b^{i+1}a\\
&\Leftrightarrow ab =ba
\end{align*}
Hence $G$ is abelian.
$$(ab)^i=a^i b^i$$
Prove that $G$ is abelian.
Solution
Let $i, \; i+1, \; i+2$ be the three consecutive numbers. Then:
- $$\begin{align*}
\left ( ab \right )^{i+2} &=a^{i+2}b^{i+2} \\
&= aa^{i+1} b^{i+1}b\\
&= a\left ( ab \right )^{i+1} b\\
&= a\left ( ab \right )^i \left ( ab \right ) b\\
&= aa^i b^i abb
\end{align*}$$ - \begin{align*}
\left ( ab \right )^{i+2} &= \left ( ab \right )^{i+1}\left ( ab \right )\\
&= a^{i+1} b^{i+1} ab
\end{align*}
\begin{align*}
a a^i b^i abb = a^{i+1}b^{i+1}ab &\Leftrightarrow \left ( a^{i+1} \right )^{-1} a a^i b^i abb = \left ( a^{i+1} \right )^{-1} a^{i+1} b^{i+1} ab \\
&\Leftrightarrow b^i abb = b^{i+1}a b\\
&\Leftrightarrow b^i ab = b^{i+1}a\\
&\Leftrightarrow ab =ba
\end{align*}
Hence $G$ is abelian.
No comments:
Post a Comment