Let $x, y, z$ be positive real number such that $x+y+z=1$. Prove that:
$$\sqrt{\frac{xy}{xy+z}}+ \sqrt{\frac{yz}{yz+x}}+ \sqrt{\frac{zx}{zx+y}} \leq \frac{3}{2}$$
Solution
We note that:
\begin{align*}
\sqrt{\frac{xy}{xy+z}} &=\sqrt{\frac{xy}{xy+z \left ( x+y+z \right )}} \\
&= \sqrt{\frac{xy}{(x+z) \left ( y+z \right )}}\\
& \leq \frac{1}{2}\left ( \frac{x}{x+z}+ \frac{y}{y+z} \right )
\end{align*}
Similarly we have that:
$$\sqrt{\frac{yz}{yz+z}} \leq \frac{1}{2}\left ( \frac{y}{y+x}+ \frac{z}{z+x} \right ) \quad , \quad \sqrt{\frac{zx}{zx+y}} \leq \frac{1}{2}\left ( \frac{x}{x+y}+ \frac{z}{z+y} \right )$$
Adding cyclic we have that:
\begin{align*}
\sum \sqrt{\frac{xy}{xy+z}} &\leq \frac{1}{2}\sum \left ( \frac{x}{x+z} + \frac{y}{y+z} \right ) \\
&= \frac{3}{2}
\end{align*}
proving the result.
$$\sqrt{\frac{xy}{xy+z}}+ \sqrt{\frac{yz}{yz+x}}+ \sqrt{\frac{zx}{zx+y}} \leq \frac{3}{2}$$
Solution
We note that:
\begin{align*}
\sqrt{\frac{xy}{xy+z}} &=\sqrt{\frac{xy}{xy+z \left ( x+y+z \right )}} \\
&= \sqrt{\frac{xy}{(x+z) \left ( y+z \right )}}\\
& \leq \frac{1}{2}\left ( \frac{x}{x+z}+ \frac{y}{y+z} \right )
\end{align*}
Similarly we have that:
$$\sqrt{\frac{yz}{yz+z}} \leq \frac{1}{2}\left ( \frac{y}{y+x}+ \frac{z}{z+x} \right ) \quad , \quad \sqrt{\frac{zx}{zx+y}} \leq \frac{1}{2}\left ( \frac{x}{x+y}+ \frac{z}{z+y} \right )$$
Adding cyclic we have that:
\begin{align*}
\sum \sqrt{\frac{xy}{xy+z}} &\leq \frac{1}{2}\sum \left ( \frac{x}{x+z} + \frac{y}{y+z} \right ) \\
&= \frac{3}{2}
\end{align*}
proving the result.
No comments:
Post a Comment