Evaluate the sum
$$\mathcal{S}= \sqrt{1+\frac{1}{1^2}+ \frac{1}{2^2}}+ \sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\cdots + \sqrt{1+\frac{1}{2011^2}+\frac{1}{2012^2}}$$
Solution
We might begin from the well known established and celebrated identity:
$$\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}} = 1+\frac{1}{n} - \frac{1}{n+1}$$
Hence:
\begin{align*}
\mathcal{S} &=\sum_{k=1}^{2011} \left [ 1+ \frac{1}{k} - \frac{1}{k+1} \right ] \\
&=2011 +1 - \frac{1}{2012} \\
&=\frac{2012^2-1}{2012}
\end{align*}
$$\mathcal{S}= \sqrt{1+\frac{1}{1^2}+ \frac{1}{2^2}}+ \sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\cdots + \sqrt{1+\frac{1}{2011^2}+\frac{1}{2012^2}}$$
Solution
We might begin from the well known established and celebrated identity:
$$\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}} = 1+\frac{1}{n} - \frac{1}{n+1}$$
Hence:
\begin{align*}
\mathcal{S} &=\sum_{k=1}^{2011} \left [ 1+ \frac{1}{k} - \frac{1}{k+1} \right ] \\
&=2011 +1 - \frac{1}{2012} \\
&=\frac{2012^2-1}{2012}
\end{align*}
No comments:
Post a Comment