Let $\mathcal{R}$ be a ring and we suppose that $a, b \in \mathcal{R}$ be two elements of $\mathcal{R}$ such that $ab=1$. Prove that:
- $a^n b^n =1$ forall $n \geq 1$.
- $(1-ba)b^n =0$ forall $n \geq 1$.
- the elements $ba$ and $1-ba$ are idempotent and orthogonal.
- if $c \in \mathcal{R}$ and $ca=1$ , then the element $a$ is invertible and it holds that:
$$a^{-1}=b=c$$
- Let us use induction on this one. For $n=1$ the result obviously holds by the assumptions. Let $n \geq 2$ and assume that $a^n b^n =1$ Thus:
\begin{align*}
a^{n+1}b^{n+1} &= a^n a b b^n\\
&=a^n b^n \\
&=1
\end{align*} - We have successively:
\begin{align*}
\left ( 1-ba \right )b^n &=b^n -ba b^n \\
&=b^n -bab b^{n-1} \\
&= b^n - b b^{n-1}\\
&= b^n - b^n \\
&=0
\end{align*} - We have that:
- \begin{align*} \left ( ba \right )^2 &=ba ba \\ &= ba\\ \end{align*}
- \begin{align*}
\left ( 1-ba \right )^2 &= \left ( 1-ba \right )\left ( 1-ba \right )\\
&= 1-ba -ba + ba ba\\
&= 1-ba-ba + ba\\
&= 1-ba
\end{align*}
- We have $ca=1 \Rightarrow cab=b \Rightarrow c=b \Rightarrow ab=1=ba$.Hence $a$ is invertible with inverse $b$ and $c$.
No comments:
Post a Comment