Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function in $[0, 1]$, strictly monotonic and $f(0)=1$ . If forall $x \in \mathbb{R}$ holds $f\left( f(x) \right)=x$ then evaluate the integral
$$\mathcal{J} = \int_0^1 \left(x - f(x) \right)^{2016} \, {\rm d}x$$
Solution
Well,
\begin{align*}
\int_{0}^{1} \left ( x-f(x) \right )^{2016} \, {\rm d}x &\overset{x=f(u)}{=\! =\! =\! =\! =\!} \int_{1}^{0} \left ( f(u) - u \right )^{2016} f'(u) \, {\rm d}u \\
&= - \int_{0}^{1} \left ( u - f(u) \right )^{2016} f'(u) \, {\rm d}u \\
&= \frac{1}{2}\int_{0}^{1}\left ( u - f(u) \right )^{2016} \left ( 1-f'(u) \right ) \, {\rm d}u \\
&\!\!\!\!\!\!\!\overset{y=u-f(u)}{=\! =\! =\! =\! =\! =\!} \; \frac{1}{2} \int_{-1}^{1} y^{2016} \, {\rm d}y \\
&= \int_{0}^{1} y^{2016} \, {\rm d}y \\
&= \frac{1}{2017}
\end{align*}
Welcome to 2017!
Remarks:
$$\mathcal{J} = \int_0^1 \left(x - f(x) \right)^{2016} \, {\rm d}x$$
Solution
Well,
\begin{align*}
\int_{0}^{1} \left ( x-f(x) \right )^{2016} \, {\rm d}x &\overset{x=f(u)}{=\! =\! =\! =\! =\!} \int_{1}^{0} \left ( f(u) - u \right )^{2016} f'(u) \, {\rm d}u \\
&= - \int_{0}^{1} \left ( u - f(u) \right )^{2016} f'(u) \, {\rm d}u \\
&= \frac{1}{2}\int_{0}^{1}\left ( u - f(u) \right )^{2016} \left ( 1-f'(u) \right ) \, {\rm d}u \\
&\!\!\!\!\!\!\!\overset{y=u-f(u)}{=\! =\! =\! =\! =\! =\!} \; \frac{1}{2} \int_{-1}^{1} y^{2016} \, {\rm d}y \\
&= \int_{0}^{1} y^{2016} \, {\rm d}y \\
&= \frac{1}{2017}
\end{align*}
Welcome to 2017!
Remarks:
- We might not know what all those functions are but we were able to compute the integral for all those functions.
- It is of quite interesting to actually find all continuous functions $f:\mathbb{R} \rightarrow \mathbb{R}$ satisfying:
$$f(f(x))=x \; , \;\; x \in \mathbb{R}$$
No comments:
Post a Comment