Let $f, g:\mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions. If $f$ is convex then prove that:
$$f \left( \int_0^1 g(x) \, {\rm d}x \right) \leq \int_0^1 f\left(g(x)\right)\, {\rm d}x$$
$$f \left( \int_0^1 g(x) \, {\rm d}x \right) \leq \int_0^1 f\left(g(x)\right)\, {\rm d}x$$