Let $a_n$ be a real sequence such that $a_1=2$ and:
$$a_n=\frac{n+1}{n-1}\sum_{i=1}^{n-1}a_i, \;\; n \geq 2$$
Express $a_n$ in an inductive form.
Solution
Successively we have:
$$\begin{aligned}
a_n &=\frac{n+1}{n-1}\sum_{i=1}^{n-1}a_i \\
&= \frac{n+1}{n-1}\left [ \sum_{i=1}^{n-2}a_i +a_{n-1} \right ]=\frac{n+1}{n-1}\left [ \sum_{i=1}^{n-1}a_i +\frac{n}{n-2}\sum_{i=1}^{n-2}a_i \right ]\\
&= \frac{n+1}{n-1}\cdot \frac{2n-2}{n-2}\sum_{i=1}^{n-2}a_i= 2\cdot \frac{n+1}{n-2}\sum_{i=1}^{n-2}a_i\\
&= 2\cdot \frac{n+1}{n-2}\left [ \sum_{i=1}^{n-3}a_i +a_{n-2} \right ]\\
&= \cdots\\
&=2^{n-2}(n+1)a_1 = 2^{n-2}(n+1)\cdot 2 \\
&=2^{n-1}(n+1)
\end{aligned}$$
hence $a_n=2^{n-1} (n+1), \; n \geq 1$.
$$a_n=\frac{n+1}{n-1}\sum_{i=1}^{n-1}a_i, \;\; n \geq 2$$
Express $a_n$ in an inductive form.
Solution
Successively we have:
$$\begin{aligned}
a_n &=\frac{n+1}{n-1}\sum_{i=1}^{n-1}a_i \\
&= \frac{n+1}{n-1}\left [ \sum_{i=1}^{n-2}a_i +a_{n-1} \right ]=\frac{n+1}{n-1}\left [ \sum_{i=1}^{n-1}a_i +\frac{n}{n-2}\sum_{i=1}^{n-2}a_i \right ]\\
&= \frac{n+1}{n-1}\cdot \frac{2n-2}{n-2}\sum_{i=1}^{n-2}a_i= 2\cdot \frac{n+1}{n-2}\sum_{i=1}^{n-2}a_i\\
&= 2\cdot \frac{n+1}{n-2}\left [ \sum_{i=1}^{n-3}a_i +a_{n-2} \right ]\\
&= \cdots\\
&=2^{n-2}(n+1)a_1 = 2^{n-2}(n+1)\cdot 2 \\
&=2^{n-1}(n+1)
\end{aligned}$$
hence $a_n=2^{n-1} (n+1), \; n \geq 1$.
No comments:
Post a Comment