Consider the sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ such that:
$$\lim_{n \rightarrow +\infty} \frac{x_1^{2p}+x_2^{2p}+\cdots+x_n^{2p}}{n}=0$$.
where $p$ is a positive integer. Prove that $\lim \limits_{n \rightarrow +\infty} \frac{x_1+x_2+\cdots+x_n}{n}=0$.
Does the converse hold?
Solution
$$\lim_{n \rightarrow +\infty} \frac{x_1^{2p}+x_2^{2p}+\cdots+x_n^{2p}}{n}=0$$.
where $p$ is a positive integer. Prove that $\lim \limits_{n \rightarrow +\infty} \frac{x_1+x_2+\cdots+x_n}{n}=0$.
Does the converse hold?
Solution