Let $\mathbb{F}$ be any field and let $A$ be a square matrix over $\mathbb{F}$. Then $A$ is the product of two symmetric matrices over $\mathbb{F}$.
Solution:
(We give the proof as given by Heydar Radjavi in American Mathematical Society Journal)
If $S_1, S_2, T$ are matrices of the same size over $\mathbb{F}$, if $S_j = S_j^{t}, \; j=1, 2, \dots, n $ and if $T$ is invertible then $T^{-1} (S_1 S_2) T$ is the product of two symmetric matrices $T^{-1} S_1 (T^t)^{-1}$ and $ T^t S_2 T$ over $\mathbb{F}$. Hence we can assume , without loss of generality, that $A$ is in the rational form :
$$A= {\rm diag} (A_1, \cdots A_n )$$
where each $A_i$ is of the form:
$$ B=\begin{pmatrix}
0 &0 &0 &\cdots &0 &a_1 \\
1& 0 &0 &\cdots &0 &a_2 \\
0&1 &0 &\cdots &0 &a_3 \\
\vdots& \vdots & \vdots &\ddots &\vdots &\vdots \\
0& 0 &0 &\cdots &1 &a_n
\end{pmatrix}$$
So it suffices to prove the theorem for a matrix of the form $B$. The matrix:
$$C=\begin{pmatrix}
a_2 &a_3 &a_4 &\cdots &a_{n-1} &a_n & -1\\
a_3&a_4 &a_5 &\cdots &a_n &-1 &0 \\
\vdots&\vdots &\vdots & \ddots &\vdots &\vdots &\vdots \\
a_n &-1 &0 &\cdots &0 &0 &0 \\
-1&0 &0 &\cdots &0 &0 &0
\end{pmatrix}$$
is symmetric and invertible over $\mathbb{F}$. Computation shows that $BC$ is also symmetric and $B= (BC)C^{-1} $ is the product of two symmetric matrices over $\mathbb{F}$.
Solution:
(We give the proof as given by Heydar Radjavi in American Mathematical Society Journal)
If $S_1, S_2, T$ are matrices of the same size over $\mathbb{F}$, if $S_j = S_j^{t}, \; j=1, 2, \dots, n $ and if $T$ is invertible then $T^{-1} (S_1 S_2) T$ is the product of two symmetric matrices $T^{-1} S_1 (T^t)^{-1}$ and $ T^t S_2 T$ over $\mathbb{F}$. Hence we can assume , without loss of generality, that $A$ is in the rational form :
$$A= {\rm diag} (A_1, \cdots A_n )$$
where each $A_i$ is of the form:
$$ B=\begin{pmatrix}
0 &0 &0 &\cdots &0 &a_1 \\
1& 0 &0 &\cdots &0 &a_2 \\
0&1 &0 &\cdots &0 &a_3 \\
\vdots& \vdots & \vdots &\ddots &\vdots &\vdots \\
0& 0 &0 &\cdots &1 &a_n
\end{pmatrix}$$
So it suffices to prove the theorem for a matrix of the form $B$. The matrix:
$$C=\begin{pmatrix}
a_2 &a_3 &a_4 &\cdots &a_{n-1} &a_n & -1\\
a_3&a_4 &a_5 &\cdots &a_n &-1 &0 \\
\vdots&\vdots &\vdots & \ddots &\vdots &\vdots &\vdots \\
a_n &-1 &0 &\cdots &0 &0 &0 \\
-1&0 &0 &\cdots &0 &0 &0
\end{pmatrix}$$
is symmetric and invertible over $\mathbb{F}$. Computation shows that $BC$ is also symmetric and $B= (BC)C^{-1} $ is the product of two symmetric matrices over $\mathbb{F}$.
No comments:
Post a Comment