This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Linear Algebra. Show all posts
Showing posts with label Linear Algebra. Show all posts

Monday, November 7, 2016

Identity matrix

Let $A \in \mathcal{M}_3 \left( \mathbb{R} \right)$ such that $\det A =1$ and ${\rm tr} (A)= {\rm tr} (A^{-1})=0$. Prove that $A^3=\mathbb{I}_{3 \times 3}$.

Solution

Linear map and trace

Let $f:\mathbb{F}^{n \times n} \rightarrow \mathbb{F}$ be a linear map such that $f\left ( AB \right ) = f \left ( BA \right )$  forall $A, B \in \mathbb{F}^{n \times n}$. Prove that there exists a $\kappa \in \mathbb{F}$ such that $f\left ( A \right ) = \kappa \;{\rm tr} \left ( A \right )$ forall $A \in \mathbb{F}^{n \times n}$.

Solution

Wednesday, November 2, 2016

A zero determinant

Let $A \in \mathcal{M}_n \left( \mathbb{C} \right)$ with $n \geq 2$ such that

$$\det \left ( A+X \right )=\det A + \det X$$

for every matrix $X \in \mathcal{M}_n \left( \mathbb{C} \right)$. Prove that $A=\mathbb{O}$.

Solution

Tuesday, September 13, 2016

On a determinant

Let $p$ be a prime number and let $\omega$ be a primitive $p$-th root of unity. Define:

$$\mathcal{V} = \det \begin{pmatrix}
1 &1  &1  &\cdots  &1 \\
 1& \omega &\omega^2  &\cdots  &\omega^{p-1} \\
1 &\omega^2  &\left ( \omega^2 \right )^2  &\cdots  &\left ( \omega^2 \right )^{p-1} \\
 \vdots&\vdots  &\vdots  &\ddots  & \vdots\\
 1& \omega^{p-1} &\left ( \omega^{p-1} \right )^2  &\cdots  & \left ( \omega^{p-1} \right )^{p-1}
\end{pmatrix}$$

Evaluate the rational number $\mathcal{V}^2$.

Solution

Tuesday, June 14, 2016

A non diagonizable matrix

Let $A \in \mathcal{M}_{2 \times 2} (\mathbb{R})$ such that $A^2+\mathbb{I}_{2 \times 2}=0$. Evaluate the minimal polynomial of $A$ and prove that $A$ is not diagonizable.

Solution

Thursday, March 31, 2016

Invertible matrices

Consider the matrices $A \in \mathcal{M}_{m \times n}$ and $B \in \mathcal{M}_{n \times m}$. If $AB +\mathbb{I}_m$ is invertible prove that $BA+\mathbb{I}_n$ is also invertible.

Solution

Wednesday, March 16, 2016

A determinant

Let $\gcd(i, j)$ denote the greatest common divisor of $i, j$ and let $\varphi$ denote Euler's totient function. Prove that:

$$\begin{vmatrix}
\gcd(1,1) &\gcd(1, 2)  &\cdots  & \gcd(1,n)\\
 \gcd(2,1)&\gcd(2,2)  &\cdots  & \gcd(2,n)\\
 \vdots&  \vdots  & \ddots &\vdots \\
 \gcd(n,1)&\gcd(n,2)  &\cdots  &\gcd(n,n)
\end{vmatrix}= \prod_{j=1}^{n}\varphi(j)$$

Solution

Monday, February 15, 2016

A value of a determinant

Let $A \in \mathcal{M}_n(\mathbb{R})$ such as $A^3=4I_n-3A$.Prove that $$\det(A+I_n)=2^n$$

Solution

Friday, November 6, 2015

A determinant

Let $a_i>0$. Evaluate the determinant:

$$\left[\begin{matrix}a_1&a_2&a_3&\ldots&\ldots&a_{n-1}&a_n\\-x&x&0&\ldots&\ldots&0&0\\0&-x&x&\ldots&\ldots&0&0\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\\ldots&\ldots&\ldots&\ldots&\ldots&\ldots&\ldots\\0&0&0&\ldots&\ldots&x&0\\0&0&0&\ldots&\ldots&-x&x\end{matrix}\right]$$

Solution

Friday, October 30, 2015

There do not exist points

Prove that there do not exist four points in $\mathbb{R}^2$ whose pairwise distances are all odd integers.

Solution

Sunday, October 25, 2015

Positive determinant of a matrix

Let $A \in \mathbb{R}$ be a matrix  such that $A^3=A +\mathbb{I}$. Prove that $\det A >0$.

Solution

Equal determinants

Let $A, B \in \mathbb{R}^{n \times n}$ that are diagonizable in $\mathbb{R}$. If $\det (A^2+B^2)=0$ and $AB=BA$ , then prove that $\det A = \det B =0$.

Solution

Thursday, October 1, 2015

Direct sum

We know that every function can be written as the sum of an odd and even function. That is:

$$f(x)={\rm E}+ {\rm O}$$

where ${\rm E}$ is the even function which is no other than  ${\rm E}=\frac{f(x)+f(-x)}{2}$ and the odd function is no other than ${\rm O} = \frac{f(x)-f(-x)}{2}$. Also this decomposition is unique (left as an exercise to the reader). Prove that the sum of the odd and the even function is a direct sum.

Solution

Sunday, September 20, 2015

Determinant and eigenvalues of orthogonal matrix

Let $A$ be an orthogonal matrix . Prove that:

a) The determinant of the matrix $A$ is $\det A = \pm 1$.
b) The absolute value of the eigenvalues (if there exist) of the matrix $A$ is $1$.

Solution

Tuesday, September 15, 2015

Rotation matrix

Give the matrix

$$A= \begin{pmatrix}
\sqrt{3}/2 &0  &1/2 \\
 0& 1 &0 \\
 -1/2& 0 & \sqrt{3}/2
\end{pmatrix}$$

examine if it is a rotation of a plane around an axis that is perpendicular to it. If so, determine the angle of rotation and the axis.

Solution

Perpendicular eigenvectors

Let $A \in \mathbb{R}^{n \times n}$ be a matrix such that $A=A^t$. Prove that, if $u$ and $v$ are eigenvectors of $A$ corresponding to different eigenvalues , then $\langle u, v \rangle =0$.

Solution

Monday, September 14, 2015

Minimal polynomial and zero matrix

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Suppose that there exists an integer $m>0$ such that $A^m = \mathbb{O}_{n \times n}$. Prove that $A$ is the zero matrix.

Solution

Symmetric Matrix

Let $A\in \mathbb{R}^{n \times n}$ be a symmetric matrix such that $A^3=A^2$. Prove that $A^2=A$.

Solution

Friday, September 11, 2015

Non invertible matrix

Prove that for all matrices $A \in \mathbb{R}^{2\times 2}$ there are at most two values of $\ell \in \mathbb{R}$ such that the matrix $A+\ell \mathbb{I}_2$ is not invertible.

Solution

Friday, August 14, 2015

Trace of matrix and Cayley Hamilton

Let $A \in \mathbb{R}^{2 \times 2}$. Prove that:
$$A^2-\text{tr}\left(A\right)A+\det\left(A\right) \mathbb{I}=0$$

Solution