Evaluate the sum:
$$S= \frac{1}{1+2}+ \frac{1}{1+2+3}+\cdots + \frac{1}{1+2+3+\cdots +2015}$$
Solution
The denominators are successive terms of an arithmetic progression. Hence:
$${\begin{aligned}
S &=\frac{1}{\frac{2\cdot 3}{2}}+ \frac{1}{\frac{3\cdot 4}{2}}+ \cdots + \frac{1}{\frac{2015 \cdot 2016}{2}} \\
&= \frac{2}{2\cdot 3+ 3\cdot 4+\cdots+ 2015\cdot 2016}\\
&= \left (\frac{2}{2}\bcancel{-\frac{2}{3}} \right )+ \left ( \bcancel{\frac{2}{3}}- \frac{2}{4} \right )+\cdots +\left ( \bcancel{\frac{2}{2015}}- \frac{2}{2016} \right )\\
&= 1- \frac{2}{2016}\\
&=\frac{1007}{1008}
\end{aligned}}$$
$$S= \frac{1}{1+2}+ \frac{1}{1+2+3}+\cdots + \frac{1}{1+2+3+\cdots +2015}$$
Solution
The denominators are successive terms of an arithmetic progression. Hence:
$${\begin{aligned}
S &=\frac{1}{\frac{2\cdot 3}{2}}+ \frac{1}{\frac{3\cdot 4}{2}}+ \cdots + \frac{1}{\frac{2015 \cdot 2016}{2}} \\
&= \frac{2}{2\cdot 3+ 3\cdot 4+\cdots+ 2015\cdot 2016}\\
&= \left (\frac{2}{2}\bcancel{-\frac{2}{3}} \right )+ \left ( \bcancel{\frac{2}{3}}- \frac{2}{4} \right )+\cdots +\left ( \bcancel{\frac{2}{2015}}- \frac{2}{2016} \right )\\
&= 1- \frac{2}{2016}\\
&=\frac{1007}{1008}
\end{aligned}}$$
No comments:
Post a Comment