This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Sums. Show all posts
Showing posts with label Sums. Show all posts

Monday, October 17, 2016

Another Fibonacci series

Let $F_n$ denote the $n$ -th Fibonacci number. Evaluate the sum:

$$\mathcal{S} = \sum_{n=0}^\infty \sum_{k=0}^n \frac{F_{2k}F_{n-k}}{10^n}$$

Solution

Sunday, October 16, 2016

A series involving Fibanacci

Let $F_n$ denote the $n$-th Fibonacci number with initial values $F_1=F_2=1$. Prove that:

$$\sum_{n=0}^{\infty} \arctan \frac{1}{F_{2n+1}} = \frac{\pi}{2}$$

Solution

Saturday, July 30, 2016

An equality of two finite sums

Let $n \in \mathbb{N}$. Prove that:

$$\sum_{k=1}^{n}\frac{1}{4k^{2}-2k}=\sum_{k=n+1}^{2n}\frac{1}{k}$$

Solution

Thursday, December 31, 2015

A Fibonacci sum

Let $F_n$ denote the $n$-th Fibonacci sum. Evaluate (in a closed form) the sum:

$$\sum_{n=0}^{N} \frac{1}{F_{2^n}}$$

Solution

Tuesday, October 20, 2015

Finite sum

Prove that:

$$\sum_{k=0}^{n} \frac{(-1)^k}{k+1}\binom{n}{k}=\frac{1}{n+1}$$

Solution

Monday, September 14, 2015

Trigonometric treat

Evaluate the sum:

$$\frac{1}{\cos 0^\circ \cos 1^\circ}+\frac{1}{\cos 1^\circ \cos 2^\circ}+ \frac{1}{\cos 2^\circ \cos 3^\circ}+\cdots+ \frac{1}{\cos 88^\circ \cos 89^\circ}$$

Solution

Monday, September 7, 2015

Sum with complex numbers

Let $z \in \mathbb{C}$ such that $z^{2017}=1$ and $z\neq 1$. Evaluate the sum $\displaystyle \sum_{n=1}^{2017} \frac{1}{1+z^n}$.

Solution

Sunday, August 2, 2015

Sum of cosines

Show that:

$$\cos \frac{\pi}{5} + \cos \frac{3\pi}{5}= \frac{1}{2}$$

Solution

Wednesday, July 22, 2015

Finite sum

Evaluate the sum:

$$S= \frac{1}{1+2}+ \frac{1}{1+2+3}+\cdots + \frac{1}{1+2+3+\cdots +2015}$$

Solution

Tuesday, July 14, 2015

Alternate binomial sum

Prove that:

$$\sum_{k=0}^{2n}(-1)^k \binom{2n}{k}^2 = (-1)^n \binom{2n}{n}$$

Solution

Sunday, April 19, 2015

Alternating Euler Sum

Evaluate the sum:

$$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\left ( 1-\frac{1}{2}+\cdots +\frac{(-1)^{n-1}}{n} \right )$$

Solution: