Let $F_n$ denote the $n$-th Fibonacci number. Prove that the determinant of the Hankel matrix defined as:
$$\mathcal{H}=\begin{bmatrix} F_n &F_{n+1} &F_{n+2} &\cdots &F_{2n-1} \\ F_{n+1}&F_{n+2} & F_{n+3} &\cdots &F_{2n} \\ F_{n+2}&F_{n+3} &F_{n+4} &\cdots &F_{2n+1} \\ \vdots & \vdots &\vdots & \ddots & \vdots \\ F_{2n-1}&F_{2n} &F_{2n+1} &\cdots & F_{3n-2} \end{bmatrix}$$
is equal to zero.
Solution
For the Fibonacci sequense holds: \(F_{n+1}=F_{n}+F_{n-1}\,,\quad n\in\mathbb{N}\,.\) Using this on the elements of the third \((\dagger)\) column we have
$$\begin{aligned}
|H_n|&=\begin{vmatrix}
F_n &F_{n+1} &F_{n+2} &\cdots &F_{2n-1} \\
F_{n+1}&F_{n+2} & F_{n+3} &\cdots &F_{2n} \\
F_{n+2}&F_{n+3} &F_{n+4} &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1}&F_{2n} &F_{2n+1} &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&=\begin{vmatrix}
F_n & F_{n+1} & F_{n+1}+F_n &\cdots &F_{2n-1} \\
F_{n+1} & F_{n+2} & F_{n+2}+F_{n+1} &\cdots &F_{2n} \\
F_{n+2} & F_{n+3} & F_{n+3}+F_{n+2} &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1} & F_{2n} & F_{2n}+F_{2n-1} &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&\stackrel{C_{3}\to C_3-C_2-C_1}{=\!=\!=\!=\!=\!=\!=\!=\!=}
\begin{vmatrix}
F_n & F_{n+1} & 0 &\cdots &F_{2n-1} \\
F_{n+1} & F_{n+2} & 0 &\cdots &F_{2n} \\
F_{n+2} & F_{n+3} & 0 &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1} & F_{2n} & 0 &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&=0\,.
\end{aligned}$$
\((\dagger)\) We treat the cases for \(n\times n\) matrices with \(n\geqslant3\). For \(n=1,2\) the determinants are not \(0\) because \(|H_1|=|F_1|=|1|=1\) and \(|H_2|=F_2F_4-F_3^2=-1\)
$$\mathcal{H}=\begin{bmatrix} F_n &F_{n+1} &F_{n+2} &\cdots &F_{2n-1} \\ F_{n+1}&F_{n+2} & F_{n+3} &\cdots &F_{2n} \\ F_{n+2}&F_{n+3} &F_{n+4} &\cdots &F_{2n+1} \\ \vdots & \vdots &\vdots & \ddots & \vdots \\ F_{2n-1}&F_{2n} &F_{2n+1} &\cdots & F_{3n-2} \end{bmatrix}$$
is equal to zero.
Solution
For the Fibonacci sequense holds: \(F_{n+1}=F_{n}+F_{n-1}\,,\quad n\in\mathbb{N}\,.\) Using this on the elements of the third \((\dagger)\) column we have
$$\begin{aligned}
|H_n|&=\begin{vmatrix}
F_n &F_{n+1} &F_{n+2} &\cdots &F_{2n-1} \\
F_{n+1}&F_{n+2} & F_{n+3} &\cdots &F_{2n} \\
F_{n+2}&F_{n+3} &F_{n+4} &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1}&F_{2n} &F_{2n+1} &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&=\begin{vmatrix}
F_n & F_{n+1} & F_{n+1}+F_n &\cdots &F_{2n-1} \\
F_{n+1} & F_{n+2} & F_{n+2}+F_{n+1} &\cdots &F_{2n} \\
F_{n+2} & F_{n+3} & F_{n+3}+F_{n+2} &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1} & F_{2n} & F_{2n}+F_{2n-1} &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&\stackrel{C_{3}\to C_3-C_2-C_1}{=\!=\!=\!=\!=\!=\!=\!=\!=}
\begin{vmatrix}
F_n & F_{n+1} & 0 &\cdots &F_{2n-1} \\
F_{n+1} & F_{n+2} & 0 &\cdots &F_{2n} \\
F_{n+2} & F_{n+3} & 0 &\cdots &F_{2n+1} \\
\vdots & \vdots &\vdots & \ddots & \vdots \\
F_{2n-1} & F_{2n} & 0 &\cdots & F_{3n-2}
\end{vmatrix}\\\\
&=0\,.
\end{aligned}$$
\((\dagger)\) We treat the cases for \(n\times n\) matrices with \(n\geqslant3\). For \(n=1,2\) the determinants are not \(0\) because \(|H_1|=|F_1|=|1|=1\) and \(|H_2|=F_2F_4-F_3^2=-1\)
No comments:
Post a Comment