This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Wednesday, August 5, 2015

Limit of a sequence

Find the limit of the sequence:

$$a_n= \left ( 1- \frac{1}{2^2} \right )\left ( 1- \frac{1}{3^2} \right )\cdots \left ( 1- \frac{1}{n^2} \right ), \;\; n \geq 2$$

Solution

The sequence takes its equivalent form:

$$\begin{aligned}
\prod_{k=2}^{n}\left ( 1-\frac{1}{k^2} \right ) &=\prod_{k=2}^{n}\left [ \left ( 1- \frac{1}{k} \right )\left ( 1+ \frac{1}{k} \right ) \right ] \\
 &= \left [ \left (  1- \frac{1}{2} \right )\left ( 1- \frac{1}{3} \right ) \cdots \left ( 1- \frac{1}{n} \right ) \cdot \left ( 1+ \frac{1}{2} \right )\left ( 1+ \frac{1}{3} \right )\cdots \left ( 1+ \frac{1}{n} \right )  \right ] \\
 &=\frac{1}{2}\cdot \frac{2}{3}\cdots \frac{n-1}{n}\cdot \frac{3}{2}\cdot \frac{4}{3}\cdots \frac{n+1}{n} \\
 &=\frac{1}{2}\cdot \frac{n+1}{n} \xrightarrow{n \rightarrow +\infty}\frac{1}{2}
\end{aligned}$$

Hence the limit of the sequence is $1/2$.

No comments:

Post a Comment