Find a matrix $A \in \mathbb{F}^{3\times 3}$ that has eigenvalues $1, 2, 3$ and eigenvectors the following:
$$\begin{pmatrix}
1\\
1\\
3
\end{pmatrix}, \;\; \begin{pmatrix}
1\\
1\\
0
\end{pmatrix}, \;\; \begin{pmatrix}
1\\
0\\
0
\end{pmatrix}$$
Solution
First of all we observe that the matrix $A$ we seek is diagonizable over $\mathbb{F}$ since it has $3$ eigenvalues. Hence, it can be written in the form:
$$A= U \Delta U^{-1} $$
where $\Delta$ is a diagonizable matrix. However, the matrix of the eigenvalue is a diagonizable one and the matrix $U$, we know from theory, that is the matrix of the eigenvectors. Hence:
$$A= \begin{pmatrix}
1 &1 & 1\\
1& 1 & 0\\
1& 0& 0
\end{pmatrix}\begin{pmatrix}
1 & 0&0 \\
0& 2 & 0\\
0&0 &3
\end{pmatrix}\begin{pmatrix}
1 &1 &1 \\
1& 1 & 0\\
1& 0& 0
\end{pmatrix}^{-1}$$
Multyplying the three matrices (after evaluating the inverse matrix) we get that $A$ is the matrix:
$$\begin{pmatrix}
3 &-1 &-1 \\
0& 2 & -1\\
0& 0 &1
\end{pmatrix}$$
$$\begin{pmatrix}
1\\
1\\
3
\end{pmatrix}, \;\; \begin{pmatrix}
1\\
1\\
0
\end{pmatrix}, \;\; \begin{pmatrix}
1\\
0\\
0
\end{pmatrix}$$
Solution
First of all we observe that the matrix $A$ we seek is diagonizable over $\mathbb{F}$ since it has $3$ eigenvalues. Hence, it can be written in the form:
$$A= U \Delta U^{-1} $$
where $\Delta$ is a diagonizable matrix. However, the matrix of the eigenvalue is a diagonizable one and the matrix $U$, we know from theory, that is the matrix of the eigenvectors. Hence:
$$A= \begin{pmatrix}
1 &1 & 1\\
1& 1 & 0\\
1& 0& 0
\end{pmatrix}\begin{pmatrix}
1 & 0&0 \\
0& 2 & 0\\
0&0 &3
\end{pmatrix}\begin{pmatrix}
1 &1 &1 \\
1& 1 & 0\\
1& 0& 0
\end{pmatrix}^{-1}$$
Multyplying the three matrices (after evaluating the inverse matrix) we get that $A$ is the matrix:
$$\begin{pmatrix}
3 &-1 &-1 \\
0& 2 & -1\\
0& 0 &1
\end{pmatrix}$$
No comments:
Post a Comment