Let $f$ be a function defined as $f(1)=2$ and for every positive integer $n>1$ holds:
$$f(1)+f(2)+f(3)+\cdots +f(n) = n^2 f(n)$$
Evaluate the value $f(2013)$.
Source: CRUX
Solution
For $n>1$ we have that:
$$n^2 f(n)= \left [f(1)+f(2)+f(3)+\cdots + f(n-1)\right ]+ f(n) = (n-1) ^2f(n-1)+f(n)$$
From the initial and the last we deduce that $\displaystyle f(n) = \frac { n-1}{n+1} f(n-1)$.
Hence we can now get a recurrence relation:
$$\begin{aligned}
f(n) &=\frac { n-1}{n+1} \cdot \frac { n-2}{n}\cdot f(n-2) \\
&=\cdots \\
&=\frac { n-1}{n+1} \cdot \frac { n-2}{n}\cdots \frac { 2}{4}\cdot \frac { 1}{3} \cdot f(1) \\
&= \frac { 4\cdot 1}{(n+1)n}
\end{aligned}$$
The last for $n=2013$ gives $\displaystyle f(2013)= \frac{2}{1007 \cdot 2013}$ completing the exercise.
$$f(1)+f(2)+f(3)+\cdots +f(n) = n^2 f(n)$$
Evaluate the value $f(2013)$.
Source: CRUX
Solution
For $n>1$ we have that:
$$n^2 f(n)= \left [f(1)+f(2)+f(3)+\cdots + f(n-1)\right ]+ f(n) = (n-1) ^2f(n-1)+f(n)$$
From the initial and the last we deduce that $\displaystyle f(n) = \frac { n-1}{n+1} f(n-1)$.
Hence we can now get a recurrence relation:
$$\begin{aligned}
f(n) &=\frac { n-1}{n+1} \cdot \frac { n-2}{n}\cdot f(n-2) \\
&=\cdots \\
&=\frac { n-1}{n+1} \cdot \frac { n-2}{n}\cdots \frac { 2}{4}\cdot \frac { 1}{3} \cdot f(1) \\
&= \frac { 4\cdot 1}{(n+1)n}
\end{aligned}$$
The last for $n=2013$ gives $\displaystyle f(2013)= \frac{2}{1007 \cdot 2013}$ completing the exercise.
No comments:
Post a Comment