Continuing the post from here we give the generalization which is due to Ovidiu Furdui.
Let $k$ be a positive integer. Prove that:
$$\int_{0}^{1}\ln^k (1-x)\ln x\, {\rm d}x =(-1)^{k+1}k! \left ( k+1 - \zeta(2)-\zeta(3)- \cdots -\zeta(k+1) \right )$$
where $\zeta$ is the Riemann zeta function.
Solution
We have that:
$$\begin{align*}
\int_{0}^{1}\ln^k (1-x) \ln x \, {\rm d}x& \overset{u=1-x}{=\! =\! =\! =\!} \int_{0}^{1}\ln^k x \ln (1-x)\, {\rm d} x\\
&=-\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{1}x^n \ln^k x \, {\rm d}x \\
&= -(-1)^k k! \sum_{n=1}^{\infty}\frac{1}{n \left ( n+1 \right )^{k+1}}
\end{align*}$$
Let $\displaystyle S_k = \sum_{n=1}^{\infty}\frac{1}{n \left ( n+1 \right )^{k+1}}$ . Then:
$$\begin{align*}
S_k &=\sum_{n=1}^{\infty}\frac{1}{(n+1)^k}\left [ \frac{1}{n}- \frac{1}{n+1} \right ] \\
&= S_{k-1} - \sum_{n=2}^{\infty}\frac{1}{n^{k+1}}\\
&= S_{k-1} +1 - \zeta(k+1)\\
&= \left ( S_{k-2} +1 -\zeta(k) \right )+1 -\zeta(k+1) \\
&=S_{k-2} +2 -\zeta(k)-\zeta(k+1) \\
&= \cdots \\
&=S_0 +k -\zeta(2)- \zeta(3) - \cdots - \zeta(k+1)\\
&=\sum_{n=1}^{\infty}\left [ \frac{1}{n} - \frac{1}{n+1} \right ] +k - \zeta(2) - \zeta(3)-\cdots -\zeta(k+1) \\
&=1+k -\zeta(2)-\zeta(3)-\cdots -\zeta(k+1)
\end{align*}$$
and the result follows.
The exercise can also be found in mathematica.gr
Let $k$ be a positive integer. Prove that:
$$\int_{0}^{1}\ln^k (1-x)\ln x\, {\rm d}x =(-1)^{k+1}k! \left ( k+1 - \zeta(2)-\zeta(3)- \cdots -\zeta(k+1) \right )$$
where $\zeta$ is the Riemann zeta function.
Solution
We have that:
$$\begin{align*}
\int_{0}^{1}\ln^k (1-x) \ln x \, {\rm d}x& \overset{u=1-x}{=\! =\! =\! =\!} \int_{0}^{1}\ln^k x \ln (1-x)\, {\rm d} x\\
&=-\sum_{n=1}^{\infty}\frac{1}{n}\int_{0}^{1}x^n \ln^k x \, {\rm d}x \\
&= -(-1)^k k! \sum_{n=1}^{\infty}\frac{1}{n \left ( n+1 \right )^{k+1}}
\end{align*}$$
Let $\displaystyle S_k = \sum_{n=1}^{\infty}\frac{1}{n \left ( n+1 \right )^{k+1}}$ . Then:
$$\begin{align*}
S_k &=\sum_{n=1}^{\infty}\frac{1}{(n+1)^k}\left [ \frac{1}{n}- \frac{1}{n+1} \right ] \\
&= S_{k-1} - \sum_{n=2}^{\infty}\frac{1}{n^{k+1}}\\
&= S_{k-1} +1 - \zeta(k+1)\\
&= \left ( S_{k-2} +1 -\zeta(k) \right )+1 -\zeta(k+1) \\
&=S_{k-2} +2 -\zeta(k)-\zeta(k+1) \\
&= \cdots \\
&=S_0 +k -\zeta(2)- \zeta(3) - \cdots - \zeta(k+1)\\
&=\sum_{n=1}^{\infty}\left [ \frac{1}{n} - \frac{1}{n+1} \right ] +k - \zeta(2) - \zeta(3)-\cdots -\zeta(k+1) \\
&=1+k -\zeta(2)-\zeta(3)-\cdots -\zeta(k+1)
\end{align*}$$
and the result follows.
The exercise can also be found in mathematica.gr
No comments:
Post a Comment