This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Integrals. Show all posts
Showing posts with label Integrals. Show all posts

Wednesday, December 7, 2016

Poisson integral

Evaluate the integral:

$$\mathcal{J} = \int_0^\pi \frac{{\rm d}x}{1-2a \cos x + a^2} \quad , \quad \left| a \right| <1$$

Solution

Friday, October 21, 2016

A very interesting integral

Evaluate the integral:

$$\mathcal{J} =\int_0^1 \left( \frac{1}{1-x} + \frac{1}{\ln x} \right) \, {\rm d}x$$

Solution

Friday, August 19, 2016

Integral with log and trigonometric

Prove that

$$\int_0^{\infty} \frac{\log t (1-\cos t)}{t^2}\, {\rm d}t = \frac{\pi}{2} (1-\gamma)$$

where $\gamma$ stands for the Euler - Mascheroni constant.

Solution

Tuesday, August 9, 2016

Integral with logarithm

Evaluate the integral:

$$\mathcal{J}=\int_0^1 \frac{1-x}{(x+1) \log x}\, {\rm d}x$$

Solution

Friday, July 15, 2016

$\int_{0}^{\pi/2} \frac{\log^2 \left ( \tan x \right )}{\sin^2 \left ( x- \frac{\pi}{4} \right )} \;dx$

Evaluate the following integral:

$$\int_{0}^{\pi/2} \frac{\log^2 \left ( \tan x \right )}{\sin^2 \left ( x- \frac{\pi}{4} \right )}  \, {\rm d}x$$

Solution

Tuesday, July 5, 2016

Integral with dilogarithm

Let ${\rm Li}_2$ denote the dilogarithm function. Evaluate the integral

$$\int_0^\infty \frac{{\rm Li}_2(-x)}{1+x^2}\, {\rm d}x$$

Solution

Sunday, June 12, 2016

Example of a function

Give an example of a continuous function $f:[1, +\infty) \rightarrow \mathbb{R}$ such that $f(x)>0$ forall $x \in [1, +\infty)$ and $\bigintsss_{1}^{\infty} f(x) \, {\rm d}x$ converges while $\bigintsss_{1}^{\infty} f^2(x) \, {\rm d}x$ diverges.

Solution

Sunday, June 5, 2016

Double exponential integral

Evaluate the integral:

$$\int_0^{\infty} \int_0^{\infty} \frac{{\rm d}x \; {\rm d}y}{\left(e^x+e^y\right)^2}$$

(Ovidiu Furdui)
Solution

Monday, May 16, 2016

An arctan integral

Evaluate the integral:

$$\mathcal{J}=\int_0^1 \frac{\arctan x}{x \sqrt{1-x^2}}\, {\rm d}x$$

Solution

Sunday, May 15, 2016

A weird infinite product

Evaluate the following product

$$P =\left({\frac{2}{1}}\right)^{1/8}\cdot\left({\frac{{2\cdot 2}}{{1\cdot 3}}}\right)^{3/16}\cdot\left({\frac{{2\cdot 2\cdot 2\cdot 4}}{{1\cdot 3\cdot 3\cdot 3}}}\right)^{6/32}\cdot\left({\frac{{2\cdot 2\cdot 2\cdot 2\cdot 4\cdot 4\cdot 4\cdot 4}}{{1\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 5}}}\right)^{10/64}\cdots$$

Solution

Saturday, May 7, 2016

Sunday, May 1, 2016

Parametric integral with logarithm

Let $n \in \mathbb{N} \setminus \{1\}$. Prove that:

$$\int_{0}^{\infty} \frac{n^2 x^n \log x}{1+x^{2n}} \, {\rm d}x = \frac{\pi^2}{4} \frac{\sin \left ( \frac{\pi}{2n} \right )}{\cos^2 \left ( \frac{\pi}{2n} \right )}$$

Solution

Thursday, April 28, 2016

$\int_0^{\pi/2} \frac{\log \cos x}{\tan x }dx$

Evaluate the integral:

$$\int_{0}^{\pi/2} \frac{\log \cos x}{\tan x}\, {\rm d}x$$


Integral with logarithm and exponential

Let $k$ be a positive integral. Evaluate the integral:

$$\int_{0}^{\infty}\frac{e^x-1}{e^x+1}\log^k\left(\frac{e^x+1}{e^x-1}\right)\,{\rm d}x$$

(Ovidiu Furdui)
Solution

Tuesday, April 19, 2016

Logarithmic improper integral

Let $n \in \mathbb{N}$. Find a closed form for the integral:

$$\mathcal{J}=\int_0^\infty \frac{\log^n x}{1+x^2}\, {\rm d}x$$


Thursday, April 7, 2016

Asymptotic behavior of Wallis integrals

Let us denote with $W_n$ the Wallis integral, that is:

$$W_n=\int_0^{\pi/2} \sin^n x \, {\rm d}x$$

Prove that $W_n \sim \sqrt{\frac{\pi}{2n}}$.

Solution

Monday, April 4, 2016

A definite symmetric integral

Evaluate the integral:

$$\int_{-1/\sqrt{3}}^{1/\sqrt{3}}\left(\frac{x^4}{1-x^4}\right) \arccos \left(\frac{2x}{1+x^2}\right)\, {\rm d}x$$

Solution

Friday, March 25, 2016

A definite integral

Evaluate the integral:

$$\mathcal{J}= \int_{-\pi/2}^{\pi/2} \frac{x^2\cos x}{1+x+\sqrt{x^2+1}}\, {\rm d}x$$

Solution

Saturday, March 19, 2016

A squared log. integral

Prove that:

$$\int_{0}^{\infty}\frac{(x+1)\ln^{2}(x+1)}{(4x^{2}+8x+5)^{3/2}}dx=\frac{\pi^{2}}{40}$$

Solution

Thursday, March 17, 2016

A closed form for a generalized sin integral

Let $n \in \mathbb{N}$. Deduce a closed form for the integral:

$$\mathcal{J}_n=\int_0^\infty \left( \frac{ \sin x}{x} \right)^n \, {\rm d}x$$

Solution