Let $n \geq 3$. Prove that:
$$\sum_{k=1}^{n} \mu(k!)=1$$
Solution
We have that:
$$ \sum_{k=1}^{n} \mu(k!)= 1 -1 +1 +0 +\cdots +0 = 1$$
$$\sum_{k=1}^{n} \mu(k!)=1$$
Solution
We have that:
- $\mu(1!)=\mu(1)=1$.
- $\mu(2!)=\mu(2)=(-1)^{1}=-1$
- $\mu(3!)=\mu(1\cdot 2\cdot 3)=(-1)^{2}=1$
- $\mu(4!)=\mu(1\cdot 2\cdot 3 \cdot 4)=\mu(2^2 \cdot 3)=0$
$$ \sum_{k=1}^{n} \mu(k!)= 1 -1 +1 +0 +\cdots +0 = 1$$
No comments:
Post a Comment