This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Number Theory. Show all posts
Showing posts with label Number Theory. Show all posts

Friday, March 25, 2016

Irrational number

Prove that the number $\newcommand{\lcm}{{\rm lcm}}$

$$\mathcal{I}=\sum_{n=1}^{\infty} \frac{1}{\lcm (1, 2, \dots, n)}$$

is irrational.

Solution


The sum is $2$

Let $n$ be a perfect number. Prove that:

$$\mathbf{\sum_{d \mid n} \frac{1}{d}= 2} $$

Solution

Inverse sum of amicable numbers

Let $m , \; n$ be a pair of amicable numbers. Prove that:

$$\mathbf{\left ( \sum_{d \mid m}\frac{1}{d} \right )^{-1}+ \left ( \sum_{d \mid n} \frac{1}{d} \right )^{-1}=1}$$

Solution

Wednesday, March 23, 2016

Sunday, March 20, 2016

It is an integer

Prove that the expression

$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$

is an integer, where $m, n \in \mathbb{N}$.

Solution

Tuesday, January 19, 2016

The number is odd

Let $\phi$ denote Euler's $\phi$. If $\phi(n)=\phi(2n)$ then prove that $n$ is odd.

Solution

A determinant

Let $(a, b)$ denote the great common divisor of the numbers $a, b$. Prove that:

$$\begin{vmatrix}
\left ( 1,1 \right ) &\left ( 1,2 \right )  &\cdots  &\left ( 1,n \right ) \\
 \left ( 2,1 \right )&\left ( 2,2 \right )  & \cdots &\left ( 2,n \right ) \\
 \vdots & \vdots  & \ddots & \vdots \\
 \left ( n,1 \right )& \left ( n, 2 \right ) &\cdots  & \left ( n,n \right )
\end{vmatrix} = \prod_{k=1}^{n}\phi(k)$$

where $\phi$ is Euler's phi function.

Solution

On Mobius function

Let $n \geq 3$. Prove that:

$$\sum_{k=1}^{n} \mu(k!)=1$$

Solution

Thursday, December 17, 2015

Congruency of binomial coefficient

Let $p$ be a prime number such that $n<p<2n$. Prove that:

$$\binom{2n}{n} \equiv 0 (\bmod p)$$

Solution

Wednesday, October 14, 2015

Sunday, October 4, 2015

Irrational number

Let $N>1$. Prove that the number:
$$\mathcal{N}= \sqrt{1\cdot 2 \cdot 3 \cdot 4 \cdots (N-1)\cdot N}$$

is irrational.

Solution

Sunday, September 6, 2015

Limit and number theory

Let $\varphi $ denote the Euler function. Evaluate the limit:

$$\lim_{n \rightarrow +\infty} \frac{1}{n^2} \sum_{k \leq n} \varphi(k)$$

Solution

Wednesday, September 2, 2015

Let us copy ... Fourier

Let $a_n$ be a strictly increasing sequence of positive integers. Prove that

$$x_n =\frac{1}{a_1} + \frac{1}{a_1 a_2} +\cdots + \frac{1}{a_1 a_2 a_3 \cdots a_n}$$

converges to an irrational number.

Solution

Sunday, August 2, 2015

Diophantine equation and triplets

Find five (5) triplets $(x, y, z)\in \mathbb{N}^3$ such that $\gcd(x, y, z)=1$ and
$$x^3+y^3 = 3xyz$$

Solution

Sunday, June 21, 2015

Transcedental number

Examine whether or not the number $\displaystyle \sum_{n=1}^{\infty} \frac{1}{2^{n^2}}$ is transcedental.

Solution