Let $\gcd(i, j)$ denote the greatest common divisor of $i, j$ and let $\varphi$ denote Euler's totient function. Prove that:
$$\begin{vmatrix}
\gcd(1,1) &\gcd(1, 2) &\cdots & \gcd(1,n)\\
\gcd(2,1)&\gcd(2,2) &\cdots & \gcd(2,n)\\
\vdots& \vdots & \ddots &\vdots \\
\gcd(n,1)&\gcd(n,2) &\cdots &\gcd(n,n)
\end{vmatrix}= \prod_{j=1}^{n}\varphi(j)$$
Solution
$$\begin{vmatrix}
\gcd(1,1) &\gcd(1, 2) &\cdots & \gcd(1,n)\\
\gcd(2,1)&\gcd(2,2) &\cdots & \gcd(2,n)\\
\vdots& \vdots & \ddots &\vdots \\
\gcd(n,1)&\gcd(n,2) &\cdots &\gcd(n,n)
\end{vmatrix}= \prod_{j=1}^{n}\varphi(j)$$
Solution
Hidden Message
No comments:
Post a Comment