Prove that the expression
$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$
is an integer, where $m, n \in \mathbb{N}$.
Solution
First of all from theory it holds that:
$$\gcd(m,n)= xm +n y , \;\; x, y \in \mathbb{Z}$$
thus:
$$\frac{\gcd(m,n)}{n}\binom{n}{m}= y\binom{n}{m}+ x \frac{m}{n} \binom{n}{m}$$
However,
\begin{align*}
\frac{m}{n}\binom{n}{m} &=\frac{m}{n} \frac{n!}{m! \left ( n-m \right )!} \\
&=\frac{(n-1)!}{(m-1)!\left ( n-m \right )!} \\
&= \binom{n-1}{m}
\end{align*}
and the result follows.
$$\frac{\gcd(m,n)}{n} \binom{n}{m}$$
is an integer, where $m, n \in \mathbb{N}$.
Solution
First of all from theory it holds that:
$$\gcd(m,n)= xm +n y , \;\; x, y \in \mathbb{Z}$$
thus:
$$\frac{\gcd(m,n)}{n}\binom{n}{m}= y\binom{n}{m}+ x \frac{m}{n} \binom{n}{m}$$
However,
\begin{align*}
\frac{m}{n}\binom{n}{m} &=\frac{m}{n} \frac{n!}{m! \left ( n-m \right )!} \\
&=\frac{(n-1)!}{(m-1)!\left ( n-m \right )!} \\
&= \binom{n-1}{m}
\end{align*}
and the result follows.
No comments:
Post a Comment