This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Saturday, March 26, 2016

On a sequence

Consider the sequence of real numbers $\{x_n\}_{n=1}^{\infty}$ such that:

$$\lim_{n \rightarrow +\infty} \frac{x_1^{2p}+x_2^{2p}+\cdots+x_n^{2p}}{n}=0$$.

where $p$ is a positive integer. Prove that $\lim \limits_{n \rightarrow +\infty} \frac{x_1+x_2+\cdots+x_n}{n}=0$.

Does the converse hold?

Solution

 We recall the inequality:

$$\left ( \frac{1}{n}\sum_{k=1}^{n}x_k \right )^{2p}\leq \frac{1}{n}\sum_{k=1}^{n}x_k^{2p} \Rightarrow  \left | \frac{1}{n}\sum_{k=1}^{n}x_k \right |\leq \sqrt[2p]{\frac{1}{n}\sum_{k=1}^{n}x_k^{2p}} \longrightarrow 0$$

proving the first part.

The converse does not hold. Indeed take $x_n=(-1)^n$ thus:

$$\frac{1}{n}\sum_{k=1}^{n}x_k = \left\{\begin{matrix}
0 &,  &\text{if n is even} \\
 -\frac{1}{n}&,   &\text{if n is odd}
\end{matrix}\right.$$

Hence $\lim \limits_{n \rightarrow +\infty} \frac{x_1+x_2+\cdots+x_n}{n}=0$ but $\lim \limits_{n \rightarrow +\infty} \frac{x_1^{2p}+x_2^{2p}+\cdots+x_n^{2p}}{n}=1$.

No comments:

Post a Comment