Evaluate the limit:
$$\lim_{ n \rightarrow +\infty} \left[ \frac{\arctan 1}{n+1} + \frac{\arctan 2}{n+2}+\cdots+\frac{\arctan n }{n+n} \right]$$
Solution
Succesively we have that:
\begin{align*}
\lim_{n\to + \infty} \sum_{k=1}^n \frac{\arctan k}{n+k} &=\lim_{n\to +\infty} \sum_{k=1}^n \frac{\frac{\pi}{2}-\arctan {\frac{1}{k}}}{n+k} \\
&=\frac{\pi}{2}\lim_{n\to+\infty} \sum_{k=1}^n \frac{1}{n+k}-\lim_{n\to+\infty} \sum_{k=1}^n \frac{\arctan {\frac{1}{k}}}{n+k}
\end{align*}
Well the first limit is just a Riemann sum and evaluates to $\frac{\pi \ln 2}{2}$ while for the second we have that:
$$0<\lim_{n\to+\infty} \sum_{k=1}^n \frac{\arctan {\frac{1}{k}}}{n+k}<\lim_{n\to+ \infty} \sum_{k=1}^n \frac{1}{k(n+k)}$$
However,
\begin{align*}
\lim_{n\to+\infty} \sum_{k=1}^n \frac{1}{k(n+k)} &=\lim_{n\to +\infty} \sum_{k=1}^n \frac{1}{n}\left(\frac{1}{k}-\frac{1}{n+k} \right) \\
&=\lim_{n\to +\infty} \frac{2\mathcal{H}_n-\mathcal{H}_{2n}}{n}\\
&=\lim_{n\to +\infty} \frac{\mathcal{O}(\ln n)}{n}\\
&=0
\end{align*}
This means that our initial limit is $\frac{\pi \ln 2}{2}$.
$$\lim_{ n \rightarrow +\infty} \left[ \frac{\arctan 1}{n+1} + \frac{\arctan 2}{n+2}+\cdots+\frac{\arctan n }{n+n} \right]$$
Solution
Succesively we have that:
\begin{align*}
\lim_{n\to + \infty} \sum_{k=1}^n \frac{\arctan k}{n+k} &=\lim_{n\to +\infty} \sum_{k=1}^n \frac{\frac{\pi}{2}-\arctan {\frac{1}{k}}}{n+k} \\
&=\frac{\pi}{2}\lim_{n\to+\infty} \sum_{k=1}^n \frac{1}{n+k}-\lim_{n\to+\infty} \sum_{k=1}^n \frac{\arctan {\frac{1}{k}}}{n+k}
\end{align*}
Well the first limit is just a Riemann sum and evaluates to $\frac{\pi \ln 2}{2}$ while for the second we have that:
$$0<\lim_{n\to+\infty} \sum_{k=1}^n \frac{\arctan {\frac{1}{k}}}{n+k}<\lim_{n\to+ \infty} \sum_{k=1}^n \frac{1}{k(n+k)}$$
However,
\begin{align*}
\lim_{n\to+\infty} \sum_{k=1}^n \frac{1}{k(n+k)} &=\lim_{n\to +\infty} \sum_{k=1}^n \frac{1}{n}\left(\frac{1}{k}-\frac{1}{n+k} \right) \\
&=\lim_{n\to +\infty} \frac{2\mathcal{H}_n-\mathcal{H}_{2n}}{n}\\
&=\lim_{n\to +\infty} \frac{\mathcal{O}(\ln n)}{n}\\
&=0
\end{align*}
This means that our initial limit is $\frac{\pi \ln 2}{2}$.
No comments:
Post a Comment