This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label limits. Show all posts
Showing posts with label limits. Show all posts

Thursday, April 7, 2016

Asymptotic behavior of Wallis integrals

Let us denote with $W_n$ the Wallis integral, that is:

$$W_n=\int_0^{\pi/2} \sin^n x \, {\rm d}x$$

Prove that $W_n \sim \sqrt{\frac{\pi}{2n}}$.

Solution

Sunday, April 3, 2016

A limit

Evaluate the limit:

$$\lim_{ n \rightarrow +\infty} \left[ \frac{\arctan 1}{n+1} + \frac{\arctan 2}{n+2}+\cdots+\frac{\arctan n }{n+n} \right]$$

Solution

Thursday, December 24, 2015

Limit of nested integrals

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \geq 0$ forall $x$ and $\displaystyle \int_{-\infty}^{\infty} f(x)\, {\rm d}x=1$. For $r \geq 0$ , define:

$$I_n(r)= \idotsint \limits_{x_1^2+x_2^2+\cdots+x_n^2 \leq r} f(x_1) f(x_2) \cdots f(x_n) \;{\rm d}(x_1, x_2, \dots, x_n)$$

Evaluate the limit $\lim I_n(r)$ for a fixed $r$.

Solution

Tuesday, October 6, 2015

A limit from derivative

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function at $x_0=0$ and $f(0)=0$ and let $k \in \mathbb{N}$. Evaluate the limit:

$$\lim_{x\rightarrow 0}\frac{1}{x}\left [ f(x)+ f\left ( \frac{x}{2} \right )+ \cdots+ f\left ( \frac{x}{k-1} \right )+ f\left ( \frac{x}{k} \right ) \right ]$$

Solution

Wednesday, September 9, 2015

An interesting limit (2)

Evaluate the limit:

$$\lim_{ n \rightarrow +\infty} \frac{1}{\Gamma(n)} \int_0^n x^{n-1}e^{-x}\, {\rm d}x$$

Solution

An interesting limit (1)

Evluate the limit:

$$\lim_{n \to +\infty} \left[ {e}^{-n} \sum_{r=0}^{n} \frac{ n^r }{ r! } \right] = \frac{1}{2}$$

Solution

Sunday, September 6, 2015

Limit and number theory

Let $\varphi $ denote the Euler function. Evaluate the limit:

$$\lim_{n \rightarrow +\infty} \frac{1}{n^2} \sum_{k \leq n} \varphi(k)$$

Solution

Saturday, April 18, 2015

A limit

Evaluate the limit:

$$\lim_{n \to +\infty} \int_{0}^1 \frac{n+1}{2^{n+1}} \left(\frac{(t+1)^{n+1}-(1-t)^{n+1}}{t}\right) \,{\rm d}t$$

Solution: