Prove that the work
$$\mathcal{W}=- \oint \limits_{\gamma} \frac{(x, y, z)}{\left ( x^2+y^2+z^2 \right )^{3/2}} \cdot \, {\rm d}(x, y, z)$$
produced along a $\mathcal{C}^1$ oriented curve $\gamma$ of $\mathbb{R}^3 \setminus \{(0, 0, 0) \}$ depends only on the distances of starting and ending point of $\gamma$ about the origin.
Solution
$$\mathcal{W}=- \oint \limits_{\gamma} \frac{(x, y, z)}{\left ( x^2+y^2+z^2 \right )^{3/2}} \cdot \, {\rm d}(x, y, z)$$
produced along a $\mathcal{C}^1$ oriented curve $\gamma$ of $\mathbb{R}^3 \setminus \{(0, 0, 0) \}$ depends only on the distances of starting and ending point of $\gamma$ about the origin.
Solution