Let ${\rm Li}_2$ denote the dilogarithm function. Evaluate the integral
$$\int_0^\infty \frac{{\rm Li}_2(-x)}{1+x^2}\, {\rm d}x$$
Solution
From the link we know that for the Spences's function it holds that:
$${\rm Li}_2(-x) + {\rm Li}_2 \left ( -\frac{1}{x} \right )= - \frac{\pi^2}{6} + \frac{1}{2} \ln^2 x$$
Thus:
\begin{align*}
\int_{0}^{\infty} \frac{{\rm Li}_2(-x)}{1+x^2} \, {\rm d} x &= \int_{0}^{\infty} \frac{{\rm Li}_2\left ( -\frac{1}{x} \right )}{1+x^2} \, {\rm d}x\\
&= \frac{1}{2}\left ( \int_{0}^{\infty} \frac{{\rm Li}_2(-x)}{1+x^2} \, {\rm d}x + \int_{0}^{\infty} \frac{{\rm Li}_2 \left ( -\frac{1}{x} \right )}{1+x^2} \, {\rm d}x \right )\\
&= \frac{1}{2}\int_{0}^{\infty}\left (-\frac{1}{2} \frac{\ln^2 x}{1+ x^2} - \frac{\zeta(2)}{x^2+1} \right ) \, {\rm d}x\\
&= -\frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi^2}{6} -\frac{1}{4}\int_{0}^{\infty} \frac{\ln^2 x}{1+x^2} \, {\rm d}x\\
&=-\frac{\pi^3}{24} -\frac{1}{2}\int_{0}^{1} \frac{\ln^2 x}{1+x^2} \, {\rm d}x \\
&= -\frac{\pi^3}{24} - \frac{1}{2} \beta(3) \\
&= -\frac{7 \pi^3}{96}
\end{align*}
A possible generalization may be the following:
$$\int_{0}^{\infty} \frac{x^{s-1} {\rm Li}_2(-x)}{1+x^s} \, {\rm d}x = -\frac{\pi^3}{4} \left ( \frac{1}{3s} +\frac{1}{s^3} \right ) \; , \quad \mathfrak{Re}(s) \geq 2$$
The problem may also be found at integralsandseries.com
$$\int_0^\infty \frac{{\rm Li}_2(-x)}{1+x^2}\, {\rm d}x$$
Solution
From the link we know that for the Spences's function it holds that:
$${\rm Li}_2(-x) + {\rm Li}_2 \left ( -\frac{1}{x} \right )= - \frac{\pi^2}{6} + \frac{1}{2} \ln^2 x$$
Thus:
\begin{align*}
\int_{0}^{\infty} \frac{{\rm Li}_2(-x)}{1+x^2} \, {\rm d} x &= \int_{0}^{\infty} \frac{{\rm Li}_2\left ( -\frac{1}{x} \right )}{1+x^2} \, {\rm d}x\\
&= \frac{1}{2}\left ( \int_{0}^{\infty} \frac{{\rm Li}_2(-x)}{1+x^2} \, {\rm d}x + \int_{0}^{\infty} \frac{{\rm Li}_2 \left ( -\frac{1}{x} \right )}{1+x^2} \, {\rm d}x \right )\\
&= \frac{1}{2}\int_{0}^{\infty}\left (-\frac{1}{2} \frac{\ln^2 x}{1+ x^2} - \frac{\zeta(2)}{x^2+1} \right ) \, {\rm d}x\\
&= -\frac{1}{2} \cdot \frac{\pi}{2} \cdot \frac{\pi^2}{6} -\frac{1}{4}\int_{0}^{\infty} \frac{\ln^2 x}{1+x^2} \, {\rm d}x\\
&=-\frac{\pi^3}{24} -\frac{1}{2}\int_{0}^{1} \frac{\ln^2 x}{1+x^2} \, {\rm d}x \\
&= -\frac{\pi^3}{24} - \frac{1}{2} \beta(3) \\
&= -\frac{7 \pi^3}{96}
\end{align*}
A possible generalization may be the following:
$$\int_{0}^{\infty} \frac{x^{s-1} {\rm Li}_2(-x)}{1+x^s} \, {\rm d}x = -\frac{\pi^3}{4} \left ( \frac{1}{3s} +\frac{1}{s^3} \right ) \; , \quad \mathfrak{Re}(s) \geq 2$$
The problem may also be found at integralsandseries.com
No comments:
Post a Comment