This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Special Functions. Show all posts
Showing posts with label Special Functions. Show all posts

Monday, August 15, 2016

Series with trilogarithm

Let ${\rm Li}_3$ denote the trilogarithm function. Prove that:

$$\sum_{n=1}^{\infty} {\rm Li}_3 \left(e^{-2n \pi} \right)= \frac{7 \pi^3}{360} - \frac{\zeta(3)}{2}$$

(Seraphim Tsipelis)

Solution [by r9m]

Tuesday, July 5, 2016

Integral with dilogarithm

Let ${\rm Li}_2$ denote the dilogarithm function. Evaluate the integral

$$\int_0^\infty \frac{{\rm Li}_2(-x)}{1+x^2}\, {\rm d}x$$

Solution

Sunday, May 15, 2016

A zeta series

Evaluate the series:

$$\sum_{n=1}^{\infty} \frac{\zeta(2n)-\zeta(3n)}{n}$$

Solution

A weird infinite product

Evaluate the following product

$$P =\left({\frac{2}{1}}\right)^{1/8}\cdot\left({\frac{{2\cdot 2}}{{1\cdot 3}}}\right)^{3/16}\cdot\left({\frac{{2\cdot 2\cdot 2\cdot 4}}{{1\cdot 3\cdot 3\cdot 3}}}\right)^{6/32}\cdot\left({\frac{{2\cdot 2\cdot 2\cdot 2\cdot 4\cdot 4\cdot 4\cdot 4}}{{1\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 3\cdot 5}}}\right)^{10/64}\cdots$$

Solution

Sunday, February 7, 2016

Alternating binomial series

Evaluate the series:

$$\mathcal{S}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4^n n^2} \binom{2n}{n}$$

Solution

Sunday, October 25, 2015

Gautschi's Inequality for Gamma function

Prove that:

$$x^{1-s} < \frac{\Gamma(x+1)}{\Gamma(x+s)} < (x+1)^{1-s},\qquad x > 0,\; 0 < s < 1$$

which is better known as Gautschi's Inequality , due to Walter Gautschi.

Solution

Thursday, September 24, 2015

Integral with digamma

Let $\psi(x)$ denote the digamma function. Evaluate the integral:

$$\int_0^1 \psi(x) \sin 2n \pi x \, {\rm d}x \quad , \qquad n \in \mathbb{N} $$

Solution

Friday, September 11, 2015

An integral with arctan

Evaluate the following integral:
$$\int_0^{2-\sqrt{3}}\frac{\arctan x}{x}\, {\rm d}x$$

The result is due to Ramanujan.

Solution

Sunday, July 26, 2015

Tuesday, July 14, 2015

There does not exist function

Prove that there does not exist an elemenary function $f$ such that $f({\rm glog}x)$ is an antiderivative of ${\rm glog}x$.

(${\rm glog}x$ denotes the inverse function of $e^x/x$ and is called generalized logarithm.)

Solution

Tuesday, July 7, 2015

Series of Bessel function

Evaluate the series:

$$\sum_{n=1}^{\infty} \frac{J_0(2n)}{n^2}$$

where $J_0$ is the Bessel function of the first kind.

Solution

Sunday, June 21, 2015

Transcedental number

Examine whether or not the number $\displaystyle \sum_{n=1}^{\infty} \frac{1}{2^{n^2}}$ is transcedental.

Solution

Friday, April 3, 2015

On polygamma reflection formula

In this thread we are proving the polygamma reflection formula stating that:
$$\psi^{(n)}(1-z)+(-1)^{n+1}\psi^{(n)}(z)=(-1)^n  \pi \frac{\mathrm{d}^n }{\mathrm{d} x^n}\cot \pi z$$