Let ${\rm Li}_3$ denote the trilogarithm function. Prove that:
$$\sum_{n=1}^{\infty} {\rm Li}_3 \left(e^{-2n \pi} \right)= \frac{7 \pi^3}{360} - \frac{\zeta(3)}{2}$$
Solution [by r9m]
$$\sum_{n=1}^{\infty} {\rm Li}_3 \left(e^{-2n \pi} \right)= \frac{7 \pi^3}{360} - \frac{\zeta(3)}{2}$$
(Seraphim Tsipelis)
Solution [by r9m]