This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Euler Sums. Show all posts
Showing posts with label Euler Sums. Show all posts

Thursday, April 28, 2016

On a relation between Euler sums

Prove that:

$$\sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_{2m} }{2m+1} - \frac{1}{2} \sum_{m=1}^{\infty} \frac{(-1)^m \mathcal{H}_m}{2m+1} = \frac{\pi \log 2}{8} - \frac{\mathcal{G}}{2}$$

Solution

Saturday, March 12, 2016

An Euler non linear sum

Let $\mathbb{N} \ni m \geq 2$. Then the following formula

$$\sum_{n=1}^{\infty} \frac{\mathcal{H}_n^{(m)}}{n^m}=\frac{\zeta^2(m)+\zeta(2m)}{2}$$

holds.

Solution

Sunday, February 7, 2016

An Euler trigonometric sum

Prove that:

$$\sum_{n=1}^{\infty} \frac{\mathcal{H}_n}{n} \cos \frac{n \pi}{3}= -\frac{\pi^2}{36}$$

Solution

Tuesday, September 22, 2015

Sunday, April 19, 2015

Alternating Euler Sum

Evaluate the sum:

$$\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n}\left ( 1-\frac{1}{2}+\cdots +\frac{(-1)^{n-1}}{n} \right )$$

Solution:

Tuesday, February 24, 2015

Euler Sum

Let \( \mathcal{H}_n \) denote the \( n \) th harmonic number. Evaluate the sum:

$$ \mathcal{S}=\sum_{n=1}^{\infty}\frac{\mathcal{H}_n}{n^2} $$

Answer: \( \displaystyle \sum_{n=1}^{\infty}\frac{\mathcal{H}_n}{n^2}=2\zeta(3) \)

Proof: