This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label real analysis. Show all posts
Showing posts with label real analysis. Show all posts

Wednesday, March 9, 2016

Zero limit

Let $f:[0, +\infty) \rightarrow \mathbb{R}$ be an integrable and uniformly continuous function. Prove that $\lim \limits_{x \rightarrow +\infty} f(x)=0$. Can the result hold if the function is just continuous instead of uniformly continuous? Give a brief explanation.

Solution

Friday, March 4, 2016

An $1-1$ function

Does there exist a function $f:\mathbb{R} \rightarrow \mathbb{R}$ with $f(\mathbb{R})=\mathbb{R}^*$ that is $1-1$ ?

Solution

Monday, February 22, 2016

What is the value of $f(0)$?

Let $f:[0, +\infty) \rightarrow \mathbb{R}$ be a twice differentiable function with a continuous second derivative. If

\begin{equation} \int_{0}^{\pi}\left ( f(x) \sin x + f''(x) \sin x \right )\, {\rm d}x =2 \end{equation}

and $f(\pi)=1$ hold , then evaluate $f(0)$.

Solution

Sunday, February 21, 2016

Is it uniformly continuous?

Examine if the function $f(x)=x^2, \;\; x \in \bigcup \limits_{n=1}^{\infty}\left [ 2n, 2n+1 \right ]$ is uniformly continuous.

Solution

Monday, February 8, 2016

Existence of constants

Let $f:\mathbb{R} \rightarrow (0, +\infty)$ be a continuous function such that:

$$\int_0^1 f(x)\, {\rm d}x = \int_0^1 f^2(x)\, {\rm d}x $$

Prove that there exist $a, b \in \mathbb{R}$ such that $\displaystyle \int_a^b \frac{{\rm d}x}{f(x)}=1$.

Solution

Tuesday, February 2, 2016

There does not exist constant

Let $a_n$ be a sequence of positive numbers such that the series $\sum \limits_{n=1}^{\infty} a_n$ converges. Prove that there does not exist a positive real number $\ell$ such that:

$$\sum_{n=1}^{\infty}a_n \leq \ell \sum_{n=1}^{\infty}\frac{a_n}{\sum \limits_{k=1}^{n}\frac{1}{a_k}} $$

Solution

Friday, January 15, 2016

Continuous limit function

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a function such that the limit $\lim \limits_{y \rightarrow x} f(y)$ exists (and is in fact a real number) for all $x \in \mathbb{R}$.Let us call this limit $g(x)$. Prove that $g$ is continuous throughout $\mathbb{R}$.

Solution

Wednesday, January 6, 2016

Constant function

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a function such that $\left | f(x)-f(y) \right |\leq \left | x -y \right |^2 , \;\; \forall x, y \in \mathbb{R}$. Prove that $f$ is constant.

Solution

Friday, December 25, 2015

Is completeness theorem satisfied?

Does the ordered field of the rational functions satisfy the completeness theorem: "all non - empty sets have a supremum")

Solution

Thursday, December 24, 2015

Limit of nested integrals

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x) \geq 0$ forall $x$ and $\displaystyle \int_{-\infty}^{\infty} f(x)\, {\rm d}x=1$. For $r \geq 0$ , define:

$$I_n(r)= \idotsint \limits_{x_1^2+x_2^2+\cdots+x_n^2 \leq r} f(x_1) f(x_2) \cdots f(x_n) \;{\rm d}(x_1, x_2, \dots, x_n)$$

Evaluate the limit $\lim I_n(r)$ for a fixed $r$.

Solution

Tuesday, December 15, 2015

The identity function

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a strictly increasing function in $\mathbb{R}$. If $f(r)=r, \; \forall r \in \mathbb{Q}$ prove that $f(x)=x , \; \forall x \in \mathbb{R}$.

Solution

Wednesday, December 9, 2015

Functions mapping an open interval to a closed one

Prove that there exist non constant functions $f:\mathbb{R} \rightarrow \mathbb{R}$ that map any open interval onto a closed one.

Solution   $\newcommand{card}{{\rm card}}$

Friday, December 4, 2015

Does such function exist?

Let $0<a<1$. Does there exist a function $f:\mathbb{R} \rightarrow \mathbb{R}$ such that:

$$\left|f(x)-f(y)\right |\geq \left|x-y\right|^a, \;\; \forall x, y \in \mathbb{R}$$

Solution

Monday, November 30, 2015

Inequality from Jensen

Let $f, g:\mathbb{R} \rightarrow \mathbb{R}$ be two continuous functions. If $f$ is convex then prove that:

$$f \left( \int_0^1 g(x) \, {\rm d}x \right) \leq \int_0^1 f\left(g(x)\right)\, {\rm d}x$$


Saturday, November 14, 2015

Limit of a sequence

Find , if it exists, the limit of the sequence:

$$\mathop{\lim}\limits_{n\rightarrow{+\infty}}{({\underbrace{\sin\circ\sin\circ\ldots\circ\sin}_{n-\text{times}}})({n})}$$

Solution

Wednesday, November 4, 2015

Limit of a function

Let $f:\mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. If:

$$\lim_{x \rightarrow +\infty} [f(x)+f'(x)] =0$$

holds, then prove that $\displaystyle \lim_{x \rightarrow +\infty} f(x)=0$.

Solution


Monday, November 2, 2015

A function that is nowhere monotonic

Give an example of a function that is continuous but is nowhere monotonic. In continuity give an example of a function that is nowhere monotonic and has no extrema values.

Solution

Thursday, October 22, 2015

Gronwall Inequality

Let $f, g$ be two continuous functions , non negative in $[a, b]$ and let $c>0$. If $\displaystyle f(x) \leq c + \int_a^b f(t) g(t) \, {\rm d}t$ then prove that:

$$f(x) \leq ce^{\displaystyle \int_a^x g(t)\, {\rm d}t}$$

Solution

Wednesday, September 2, 2015

Let us copy ... Fourier

Let $a_n$ be a strictly increasing sequence of positive integers. Prove that

$$x_n =\frac{1}{a_1} + \frac{1}{a_1 a_2} +\cdots + \frac{1}{a_1 a_2 a_3 \cdots a_n}$$

converges to an irrational number.

Solution

Tuesday, September 1, 2015

Riemann integrability

Let $f:[0, 1] \rightarrow \mathbb{R}$ be defined as:

$$f(x)= \left\{\begin{matrix}
 0&,  &x \in [0,1]\cap \left ( \mathbb{R} \setminus \mathbb{Q} \right ) \\
x_n &,  &x=q_n  \in [0,1] \cap \mathbb{Q} \\
\end{matrix}\right.$$

where $x_n$ is a sequence such that $\lim x_n =0$ and $0\leq x_n \leq 1$ and $q_n$ is an enumeration of the rationals of the interval $[0, 1]$.

Prove that $f$ is Riemann integrable and that $\displaystyle \int_0^1 f(x)\, {\rm d}x =0$.

Solution