This site is currently being migrated at a new site. Please read the information below.

LaTeX

Unicode

Showing posts with label Series. Show all posts
Showing posts with label Series. Show all posts

Saturday, March 26, 2016

Series with Euler's totient function

Let $\varphi$ denote Euler's totient function. Evaluate the series:

$$\mathcal{S}=\sum_{n=1}^{\infty} \frac{\varphi(n)}{2^n-1}$$

Solution


Tuesday, March 1, 2016

A sinh integral

Let $s>1$. Evaluate the integral:

$$\mathcal{J}=\int_0^\infty \frac{x^{s-1}}{\sinh x} \, {\rm d}x$$

Solution

Sunday, February 7, 2016

An Euler trigonometric sum

Prove that:

$$\sum_{n=1}^{\infty} \frac{\mathcal{H}_n}{n} \cos \frac{n \pi}{3}= -\frac{\pi^2}{36}$$

Solution

Alternating binomial series

Evaluate the series:

$$\mathcal{S}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{4^n n^2} \binom{2n}{n}$$

Solution

Wednesday, December 23, 2015

A digamma series

Let $\psi$ denote the digamma function and $\phi$ the golden ration. Prove that:

$$\sum_{n=1}^{\infty}\frac{\psi(n+\phi) - \psi \left ( n- \frac{1}{\phi} \right )}{n^2+n-1}= \frac{\pi^2}{2\sqrt{5}} + \frac{\pi^2}{\sqrt{5}} \tan^2 \left ( \frac{\pi \sqrt{5}}{2} \right )+ \frac{4\pi }{5}\tan \frac{\pi \sqrt{5}}{2}$$

(I. Mezo, China)
Solution (Ramya Dutta/ India)

Saturday, October 17, 2015

Tuesday, September 29, 2015

Sequence of zero limit

Let $\{a_n\}_{n \in \mathbb{N}}$ be a sequence of real number such that the series $\sum \limits_{n=1}^{\infty} \frac{a_n}{n}$ converges. Prove that:

$$\lim_{n \rightarrow +\infty} \frac{a_1+a_2+\cdots +a_n}{n}=0$$

Solution

Saturday, August 29, 2015

Nested sequence and series

Let $a_n =\underbrace{\sin \left ( \sin \cdots \left ( \sin x \right )\cdots \right )}_{n \;\; {\rm times}}$. Examine if the series $\sum \limits_{n=1}^{\infty} a_n$ converges.

Solution

Friday, August 28, 2015

Sequence of series

Let $f_n: \mathbb{R} \rightarrow \mathbb{R}$ be defined as:

$$f_n(x)=\frac{\cos nx}{n^2}, \; \; n \in \mathbb{N}$$

Prove that the series $\displaystyle \sum_{n=1}^{\infty} f_n$ converges uniformly to a function $f:\mathbb{R} \rightarrow \mathbb{R}$ and that:

$$\int_0^{\pi/2} f(t)\, {\rm d}t = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)^3}$$

Solution

Sunday, August 16, 2015

Friday, July 31, 2015

Series and inequality

Prove that:

$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (n+1)}<2$$

IMC 2015 / Round 2 Problem 1

Solution

Friday, July 10, 2015

Tuesday, July 7, 2015

Series of Bessel function

Evaluate the series:

$$\sum_{n=1}^{\infty} \frac{J_0(2n)}{n^2}$$

where $J_0$ is the Bessel function of the first kind.

Solution

Sunday, June 21, 2015

Limit of a sequence

Let $(a_n)_{n\in \mathbb{N}}$ be a sequence of real numbers such that the series $\displaystyle \sum_{n=1}^{\infty} \frac{a_n}{n^s} ,\; s>0$ converges. Prove that:

$$\lim_{n \rightarrow +\infty} \frac{a_1+a_2+\cdots+a_n}{n^s}=0$$

Solution:

Sunday, May 3, 2015

Series converges

Let $\mathbb{P}$ denote the set of prime numbers. Then prove that the series $\displaystyle \sum_{\mathbb{P}}\frac{1}{p \ln p} $ converges, where $ p \in \mathbb{P}$.

Solution:

Sunday, April 12, 2015

Series

Evaluate the series:
$$\mathcal{S}=\sum_{n=1}^{\infty}\frac{2n+1}{2^n}$$

Solution:

Tuesday, March 17, 2015

Series (alternating series)

Prove the series:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3}=\frac{\pi^3}{32}$$

Solution:

Sunday, March 15, 2015

$\sum_{n=0}^{\infty}\left ( \frac{2}{27} \right )^n \binom{3n}{n}$

Evaluate the series:
$$\sum_{n=0}^{\infty}\left ( \frac{2}{27} \right )^n \binom{3n}{n}$$

Answer: $\displaystyle \frac{\sqrt{3}+1}{2}$.

Proof: